Nous prouvons que pour toute solution u du problème
de Kelvin–Helmholtz des nappes de tourbillons pour
l'équation d'Euler bi-dimensionnelle, définie localement en
temps,
la courbe de saut de u et la densité de tourbillon sont
analytiques (sous une hypothèse de régularité Holderienne
de la courbe de saut).
Nous donnons également un résultat de régularité partielle
de la trace de u sur t=0 lorsque u est définie sur un
demi-interval [O,T[.