Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Lebeau, Gilles
2002.
Régularité du problème de Kelvin–Helmholtz pour l'équation d'Euler 2d.
ESAIM: Control, Optimisation and Calculus of Variations,
Vol. 8,
Issue. ,
p.
801.
Lopes Filho, Milton C.
Lowengrub, John
Nussenzveig Lopes, Helena J.
and
Zheng, Yuxi
2006.
Numerical evidence of nonuniqueness in the evolution of vortex sheets.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 40,
Issue. 2,
p.
225.
Secchi, Paolo
2007.
Analysis and Simulation of Fluid Dynamics.
p.
201.
Ambrose, David M
2007.
Regularization of the Kelvin–Helmholtz instability by surface tension.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
Vol. 365,
Issue. 1858,
p.
2253.
Бардос, Клод
Bardos, Claude
Тити, Эдрис С
and
Titi, Edriss S
2007.
Уравнения Эйлера идеальной несжимаемой жидкости.
Успехи математических наук,
Vol. 62,
Issue. 3,
p.
5.
Constantin, Peter
2007.
On the Euler equations of incompressible fluids.
Bulletin of the American Mathematical Society,
Vol. 44,
Issue. 4,
p.
603.
Kamotski, V.
and
Lebeau, G.
2008.
On 2D Rayleigh-Taylor instabilities.
Journées équations aux dérivées partielles,
p.
1.
Shatah, Jalal
and
Zeng, Chongchun
2008.
A priori estimates for fluid interface problems.
Communications on Pure and Applied Mathematics,
Vol. 61,
Issue. 6,
p.
848.
Bardos, Claude
Titi, Edriss S.
and
Linshiz, Jasmine S.
2010.
Global regularity and convergence of a Birkhoff‐Rott‐α approximation of the dynamics of vortex sheets of the two‐dimensional Euler equations.
Communications on Pure and Applied Mathematics,
Vol. 63,
Issue. 6,
p.
697.
Benzoni-Gavage, Sylvie
Coulombel, Jean-François
and
Tzvetkov, Nikolay
2011.
Ill-posedness of nonlocal Burgers equations.
Advances in Mathematics,
Vol. 227,
Issue. 6,
p.
2220.
Castro, A.
Córdoba, D.
and
Gancedo, F.
2012.
Mathematical Aspects of Fluid Mechanics.
p.
88.
Alazard, T.
Burq, N.
and
Zuily, C.
2012.
Low regularity Cauchy theory for the water-waves problem: canals and swimming pools.
Journées équations aux dérivées partielles,
p.
1.
Wang, Chao
and
Zhang, ZhiFei
2012.
A new proof of Wu’s theorem on vortex sheets.
Science China Mathematics,
Vol. 55,
Issue. 7,
p.
1449.
Milgrom, Timur
and
Ambrose, David M.
2013.
Temporal boundary value problems in interfacial fluid dynamics.
Applicable Analysis,
Vol. 92,
Issue. 5,
p.
922.
Sueur, Franck
2015.
Viscous profiles of vortex patches.
Journal of the Institute of Mathematics of Jussieu,
Vol. 14,
Issue. 1,
p.
1.
Ambrose, David M.
2016.
Lectures on the Theory of Water Waves.
p.
140.
Ambrose, David M.
2016.
Small strong solutions for time-dependent mean field games with local coupling.
Comptes Rendus. Mathématique,
Vol. 354,
Issue. 6,
p.
589.
Caflisch, R. E.
Gargano, F.
Sammartino, M.
and
Sciacca, V.
2017.
Regularized Euler- $$\alpha $$ α motion of an infinite array of vortex sheets.
Bollettino dell'Unione Matematica Italiana,
Vol. 10,
Issue. 1,
p.
113.
Izosimov, Anton
and
Khesin, Boris
2018.
Vortex sheets and diffeomorphism groupoids.
Advances in Mathematics,
Vol. 338,
Issue. ,
p.
447.
Morisse, Baptiste
2018.
On hyperbolicity and Gevrey well-posedness. Part two: Scalar or degenerate transitions.
Journal of Differential Equations,
Vol. 264,
Issue. 8,
p.
5221.