Probabilistic models of same-different and identification judgments are compared (within each paradigm) with regard to their sensitivity to perceptual dependence or the degree to which the underlying psychological dimensions are correlated. Three same-different judgment models are compared. One is a step function or decision bound model and the other two are probabilistic variants of a similarity model proposed by Shepard. Three types of identification models are compared: decision bound models, a probabilistic multidimensional scaling model, and probabilistic models based on the Shepard-Luce choice rule. The decision bound models were found to be most sensitive to perceptual dependence, especially when there is considerable distributional overlap. The same-different model based on the city-block metric and an exponential decay similarity function, and the corresponding identification model were found to be particularly insensitive to perceptual dependence. These results suggest that if a Shepard-type similarity function accurately describes behavior, then under typical experimental conditions it should be difficult to see the effects of perceptual dependence. This result provides strong support for a perceptual independence assumption when using these models. These theoretical results may also play an important role in studying different decision rules employed at different stages of identification training.