Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T15:13:40.168Z Has data issue: false hasContentIssue false

The Relative Sensitivities of Same-Different and Identification Judgment Models to Perceptual Dependence

Published online by Cambridge University Press:  01 January 2025

Daniel M. Ennis*
Affiliation:
Philip Morris Research Center, Richmond, Virginia Department of Physiology, Medical College of Virginia
F. Gregory Ashby
Affiliation:
Department of Psychology, University of California, Santa Barbara
*
Requests for reprints should be sent to Daniel M. Ennis, Philip Morris Research Center, PO Box 26583, Richmond, VA 23261.

Abstract

Probabilistic models of same-different and identification judgments are compared (within each paradigm) with regard to their sensitivity to perceptual dependence or the degree to which the underlying psychological dimensions are correlated. Three same-different judgment models are compared. One is a step function or decision bound model and the other two are probabilistic variants of a similarity model proposed by Shepard. Three types of identification models are compared: decision bound models, a probabilistic multidimensional scaling model, and probabilistic models based on the Shepard-Luce choice rule. The decision bound models were found to be most sensitive to perceptual dependence, especially when there is considerable distributional overlap. The same-different model based on the city-block metric and an exponential decay similarity function, and the corresponding identification model were found to be particularly insensitive to perceptual dependence. These results suggest that if a Shepard-type similarity function accurately describes behavior, then under typical experimental conditions it should be difficult to see the effects of perceptual dependence. This result provides strong support for a perceptual independence assumption when using these models. These theoretical results may also play an important role in studying different decision rules employed at different stages of identification training.

Type
Original Paper
Copyright
Copyright © 1993 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We thank Robert Melara, Jerome Busemeyer and three anonymous reviewers for comments on an earlier draft of this paper.

References

Anderson, T. W. (1962). An introduction to multivariate statistical analysis, New York: Wiley.Google Scholar
Ashby, F. G. (1988). Estimating the parameters of multivariate signal detection theory from simultaneous ratings on separate stimulus components. Perception and Psychophysics, 44, 195204.CrossRefGoogle Scholar
Ashby, F. G., Gott, R. E. (1988). Decision rules in the perception and categorization of multidimensional stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 3353.Google ScholarPubMed
Ashby, F. G., Lee, W. W. (1991). Predicting similarity and categorization from identification. Journal of Experimental Psychology: General, 120, 150172.CrossRefGoogle ScholarPubMed
Ashby, F. G., & Maddox, W. T. (in press). Relations between prototype, exemplar, and decision bound models of categorization. Journal of Mathematical Psychology.Google Scholar
Ashby, F. G., Perrin, N. (1988). Toward a unified theory of similarity and recognition. Psychological Review, 95, 124150.CrossRefGoogle Scholar
Ashby, F. G., Townsend, J. T. (1986). Varieties of perceptual independence. Psychological Review, 93, 154179.CrossRefGoogle ScholarPubMed
De Soete, G., Carroll, J. D., DeSarbo, W. S. (1986). The wandering ideal point model: A probabilistic multidimensional unfolding model for paired comparisons data. Journal of Mathematical Psychology, 30, 2841.CrossRefGoogle Scholar
Ennis, D. M. (1988). Confusable and discriminable stimuli: Comments on Nosofsky (1986) and Shepard (1986). Journal of Experimental Psychology, General, 117, 408411.CrossRefGoogle Scholar
Ennis, D. M. (1992). Modelling similarity and identification when there are momentary fluctuations in psychological magnitudes. In Ashby, F. G. (Eds.), Multidimensional models of perception and cognition, Hillside, NJ: Lawrence Erlbaum Associates.Google Scholar
Ennis, D. M., & Johnson, N. L. (in press). Thurstone-Shepard similarity models as special cases of moment generating functions. Journal of Mathematical Psychology.Google Scholar
Ennis, D. M., Mullen, K. (1986). A multivariate model for discrimination methods. Journal of Mathematical Psychology, 30, 206219.CrossRefGoogle Scholar
Ennis, D. M., Mullen, K. (1986). Theoretical aspects of sensory discrimination. Chemical Senses, 11, 513522.CrossRefGoogle Scholar
Ennis, D. M., Mullen, K. (1992). A general probabilistic model for triad discrimination, preferential choice, and two-alternative identification. In Ashby, F. G. (Eds.), Multidimensional models of perception and cognition, Hillside, NJ: Lawrence Erlbaum Associates.Google Scholar
Ennis, D. M., Palen, J., Mullen, K. (1988). A multidimensional stochastic theory of similarity. Journal of Mathematical Psychology, 32, 449465.CrossRefGoogle Scholar
Fukunaga, K. (1972). Introduction to statistical pattern recognition, New York: Academic Press.Google Scholar
Graham, N., Kramer, P., Yager, D. (1987). Signal detection models for multidimensional stimuli: Probability distributions and combination rules. Journal of Mathematical Psychology, 31, 366409.CrossRefGoogle Scholar
Hinton, G. E., Anderson, J. A. (1982). Parallel models of associative memory, Hillsdale, NJ: Erlbaum.Google Scholar
Hirsch, J., Hylton, R., Graham, N. (1982). Stimultaneous recognition of two spatial-frequency components. Vision Research, 22, 365375.CrossRefGoogle Scholar
Johnson, N. L., Kotz, S. (1970). Distributions in statistics: Continuous univariate distributions-2, New York: Wiley.Google Scholar
Kruskal, J. B. (1961). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 127.CrossRefGoogle Scholar
Kruskal, J. B. (1961). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 115129.CrossRefGoogle Scholar
Medin, D. L., Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207238.CrossRefGoogle Scholar
Mullen, K., Ennis, D. M. (1987). Mathematical formulation of multivariate Euclidean models for discrimination methods. Psychometrika, 52, 235249.CrossRefGoogle Scholar
Mullen, K., Ennis, D. M. (1991). A simple multivariate probabilistic model for preferential and triadic choices. Psychometrika, 56, 6975.CrossRefGoogle Scholar
Mullen, K., Ennis, D. M., de Doncker, E., Kapenga, J. A. (1988). Multivariate models for the triangular and duo-trio methods. Biometrics, 44, 11691175.CrossRefGoogle ScholarPubMed
Nosofsky, R. M. (1985). Overall similarity and the identification of separable-dimension stimuli: A choice model analysis. Perception and Psychophysics, 38, 415432.CrossRefGoogle ScholarPubMed
Nosofsky, R. M. (1986). Attention, similarity and the identification-categorization relationship. Journal of Experimental Psychology: General, 115, 3957.CrossRefGoogle ScholarPubMed
Nosofsky, R. M. (1988). On exemplar-based exemplar representations: Comment on Ennis (1988). Journal of Experimental Psychology, General, 117, 412414.CrossRefGoogle Scholar
Nosofsky, R. M. (1990). Relations between exemplar-similarity and likelihood models of classification. Journal of Mathematical Psychology, 34, 393418.CrossRefGoogle Scholar
Olzak, L. A. (1986). Widely separated spatial frequencies: Mechanism interactions. Vision Research, 26, 11431153.CrossRefGoogle ScholarPubMed
Olzak, L. A., Wickens, T. D. (1983). The interpretation of detection data through direct multivariate frequency analysis. Psychological Bulletin, 93, 574585.CrossRefGoogle ScholarPubMed
Peterson, D. W., Mattson, R. L. (1966). A method of finding linear discriminant functions for a class of performance criteria. IEEE Transactions on Information Theory, IT-12, 380387.CrossRefGoogle Scholar
Posner, M. I., Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77, 353363.CrossRefGoogle ScholarPubMed
Posner, M. I., Keele, S. W. (1970). Retention of abstract ideas. Journal of Experimental Psychology, 83, 304308.CrossRefGoogle Scholar
Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 382407.CrossRefGoogle Scholar
Rosch, E. (1973). Natural categories. Cognitive Psychology, 4, 328350.CrossRefGoogle Scholar
Rosch, E., Simpson, C., Miller, R. S. (1976). Structural bases of typicality effects. Journal of Experimental Psychology: Human Perception and Performance, 2, 491502.Google Scholar
Rothkopf, E. Z. (1957). A measure of stimulus similarity and errors in some paired-associate learning tasks. Journal of Experimental Psychology, 53, 93101.CrossRefGoogle ScholarPubMed
Ruben, H. (1962). Probability content of regions under spherical normal distributions, IV. Annals of Mathematical Statistics, 33, 542570.CrossRefGoogle Scholar
Shepard, R. N. (1957). Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space. Psychometrika, 22, 325345.CrossRefGoogle Scholar
Shepard, R. N. (1962). The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika, 27, 125140.CrossRefGoogle Scholar
Shepard, R. N. (1962). The analysis of proximities: Multidimensional scaling with an unknown distance function. II. Psychometrika, 27, 219246.CrossRefGoogle Scholar
Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237, 13171323.CrossRefGoogle Scholar
Shepard, R. N. (1988). Time and distance in generalization and discrimination: Comment on Ennis (1988). Journal of Experimental Psychology, General, 117, 415416.CrossRefGoogle Scholar
Torgerson, W. S. (1958). Theory and methods of scaling, New York: Wiley.Google Scholar
Wickens, T. D., Olzac, L. A. (1989). The statistical analysis of concurrent detection ratings. Perception and Psychophysics, 45, 514528.CrossRefGoogle Scholar
Zinnes, J. L., MacKay, D. B. (1983). Probabilistic multidimensional scaling: Complete and incomplete data. Psychometrika, 48, 2748.CrossRefGoogle Scholar
Zinnes, J. L., MacKay, D. B. (1987). Probabilistic multidimensional analysis of preference ratio judgments. Communication and Cognition, 20, 1744.Google Scholar