In L 2(ℝd ;ℂn ), we consider a wide class of matrix elliptic secondorder differential operators $\mathcal{A}$ εwith rapidly oscillating coefficients (depending on x/ε).For a fixed τ > 0 and small ε > 0, we findapproximation of the operator exponential exp(− $\mathcal{A}$ ε τ) in the(L 2(ℝd ;ℂn ) →H 1(ℝd ;ℂn ))-operator norm with an error term of orderε. In this approximation, the corrector is taken into account. Theresults are applied to homogenization of a periodic parabolic Cauchy problem.