Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Суслина, Татьяна Александровна
and
Suslina, Tatiana Aleksandrovna
2010.
Усреднение параболической задачи Коши в классе Соболева $H^1(\mathbb{R}^d)$.
Функциональный анализ и его приложения,
Vol. 44,
Issue. 4,
p.
91.
Suslina, T.A.
2010.
Homogenization of the parabolic cauchy problem in the Sobolev class H1(Rd).
Functional Analysis and Its Applications,
Vol. 44,
Issue. 4,
p.
318.
Meshkova, Yulia Mikhailovna
and
Suslina, Tatiana Aleksandrovna
2015.
Усреднение решений начально-краевых задач для параболических систем.
Функциональный анализ и его приложения,
Vol. 49,
Issue. 1,
p.
88.
Meshkova, Yu. M.
and
Suslina, T. A.
2015.
Homogenization of solutions of initial boundary value problems for parabolic systems.
Functional Analysis and Its Applications,
Vol. 49,
Issue. 1,
p.
72.
Meshkova, Yu.M.
and
Suslina, T.A.
2016.
Homogenization of initial boundary value problems for parabolic systems with periodic coefficients.
Applicable Analysis,
Vol. 95,
Issue. 8,
p.
1736.
Suslina, T. A.
2016.
Homogenization of Schrödinger-type equations.
Functional Analysis and Its Applications,
Vol. 50,
Issue. 3,
p.
241.
Suslina, Tatiana Aleksandrovna
2016.
Усреднение уравнений типа Шрeдингера.
Функциональный анализ и его приложения,
Vol. 50,
Issue. 3,
p.
90.
Meshkova, Yulia Mikhailovna
and
Suslina, Tatiana Aleksandrovna
2017.
Усреднение задачи Дирихле для эллиптических и параболических систем с периодическими коэффициентами.
Функциональный анализ и его приложения,
Vol. 51,
Issue. 3,
p.
87.
Suslina, Tatiana
2017.
Spectral approach to homogenization of nonstationary Schrödinger-type equations.
Journal of Mathematical Analysis and Applications,
Vol. 446,
Issue. 2,
p.
1466.
Dorodnyi, M.A.
and
Suslina, T.A.
2018.
Spectral approach to homogenization of hyperbolic equations with periodic coefficients.
Journal of Differential Equations,
Vol. 264,
Issue. 12,
p.
7463.
Suslina, T. A.
2019.
Homogenization of higher-order parabolic systems in a bounded domain.
Applicable Analysis,
Vol. 98,
Issue. 1-2,
p.
3.
Cooper, Shane
and
Savostianov, Anton
2019.
Homogenisation with error estimates of attractors for damped semi-linear anisotropic wave equations.
Advances in Nonlinear Analysis,
Vol. 9,
Issue. 1,
p.
745.
Meshkova, Yulia Mikhailovna
2019.
Об усреднении периодических гиперболических систем.
Математические заметки,
Vol. 105,
Issue. 6,
p.
937.
Meshkova, Yu. M.
2019.
On the Homogenization of Periodic Hyperbolic Systems.
Mathematical Notes,
Vol. 105,
Issue. 5-6,
p.
929.
Meshkova, Yu. M.
2020.
On homogenization of the first initial-boundary value problem for periodic hyperbolic systems.
Applicable Analysis,
Vol. 99,
Issue. 9,
p.
1528.
Dorodnyi, Mark Aleksandrovich
and
Suslina, Tatiana Aleksandrovna
2020.
Операторные оценки погрешности при усреднении гиперболических уравнений.
Функциональный анализ и его приложения,
Vol. 54,
Issue. 1,
p.
69.
Dorodnyi, M. A.
and
Suslina, T. A.
2020.
Operator Error Estimates for Homogenization of Hyperbolic Equations.
Functional Analysis and Its Applications,
Vol. 54,
Issue. 1,
p.
53.
Meshkova, Yulia
2021.
Note on quantitative homogenization results for parabolic systems in $${\mathbb {R}}^d$$.
Journal of Evolution Equations,
Vol. 21,
Issue. 1,
p.
763.
Dorodnyi, M.
Suslina, T.
and
T. A. Suslina
2021.
Homogenization of hyperbolic equations with periodic coefficients in ℝ^{𝕕}: Sharpness of the results.
St. Petersburg Mathematical Journal,
Vol. 32,
Issue. 4,
p.
605.
Suslina, T. A.
2022.
Homogenization of the Schrödinger-Type Equations: Operator Estimates with Correctors.
Functional Analysis and Its Applications,
Vol. 56,
Issue. 3,
p.
229.