We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In contrast to dichotomous item response theory (IRT) models, most well-known polytomous IRT models do not imply stochastic ordering of the latent trait by the total test score (SOL). This has been thought to make the ordering of respondents on the latent trait using the total test score questionable and throws doubt on the justifiability of using nonparametric polytomous IRT models for ordinal measurement. We show that a broad class of polytomous IRT models has a weaker form of SOL, denoted weak SOL, and argue that weak SOL justifies ordering respondents on the latent trait using the total test score and, therefore, the use of nonparametric polytomous IRT models for ordinal measurement.
A probabilistic framework for the polytomous extension of knowledge space theory (KST) is proposed. It consists in a probabilistic model, called polytomous local independence model, that is developed as a generalization of the basic local independence model. The algorithms for computing “maximum likelihood” (ML) and “minimum discrepancy” (MD) estimates of the model parameters have been derived and tested in a simulation study. Results show that the algorithms differ in their capability of recovering the true parameter values. The ML algorithm correctly recovers the true values, regardless of the manipulated variables. This is not totally true for the MD algorithm. Finally, the model has been applied to a real polytomous data set collected in the area of psychological assessment. Results show that it can be successfully applied in practice, paving the way to a number of applications of KST outside the area of knowledge and learning assessment.
The \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_z$$\end{document} statistic (Drasgow et al. in Br J Math Stat Psychol 38:67–86, 1985) is one of the most popular person-fit statistics (Armstrong et al. in Pract Assess Res Eval 12(16):1–10, 2007). Snijders (Psychometrika 66:331–342, 2001) derived the asymptotic null distribution of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_z$$\end{document} when the examinee ability parameter is estimated. He also suggested the \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l^*_z$$\end{document} statistic, which is the asymptotically correct standardized version of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_z$$\end{document}. However, Snijders (Psychometrika 66:331–342, 2001) only considered tests with dichotomous items. In this paper, the asymptotic null distribution of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_z$$\end{document} is derived for mixed-format tests (those that include both dichotomous and polytomous items). The asymptotically correct standardized version of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l_z$$\end{document}, which can be considered as the extension of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$l^*_z$$\end{document} to such tests, is suggested. The Type I error rate and power of the suggested statistic are examined from several simulated datasets. The suggested statistic is computed using a real dataset. The suggested statistic appears to be a satisfactory tool for assessing person fit for mixed-format tests.
A person fit test based on the Lagrange multiplier test is presented for three item response theory models for polytomous items: the generalized partial credit model, the sequential model, and the graded response model. The test can also be used in the framework of multidimensional ability parameters. It is shown that the Lagrange multiplier statistic can take both the effects of estimation of the item parameters and the estimation of the person parameters into account. The Lagrange multiplier statistic has an asymptotic χ2-distribution. The Type I error rate and power are investigated using simulation studies. Results show that test statistics that ignore the effects of estimation of the persons’ ability parameters have decreased Type I error rates and power. Incorporating a correction to account for the effects of the estimation of the persons’ ability parameters results in acceptable Type I error rates and power characteristics; incorporating a correction for the estimation of the item parameters has very little additional effect. It is investigated to what extent the three models give comparable results, both in the simulation studies and in an example using data from the NEO Personality Inventory-Revised.
In a broad class of item response theory (IRT) models for dichotomous items the unweighted total score has monotone likelihood ratio (MLR) in the latent trait θ. In this study, it is shown that for polytomous items MLR holds for the partial credit model and a trivial generalization of this model. MLR does not necessarily hold if the slopes of the item step response functions vary over items, item steps, or both. MLR holds neither for Samejima's graded response model, nor for nonparametric versions of these three polytomous models. These results are surprising in the context of Grayson's and Huynh's results on MLR for nonparametric dichotomous IRT models, and suggest that establishing stochastic ordering properties for nonparametric polytomous IRT models will be much harder.
The sum score is often used to order respondents on the latent trait measured by the test. Therefore, it is desirable that under the chosen model the sum score stochastically orders the latent trait. It is known that unlike dichotomous item response theory (IRT) models, most polytomous IRT models do not imply stochastic ordering. It is unknown, however, (1) whether stochastic ordering is often or rarely violated and (2) whether violations yield a serious problem for practical data analysis. These are the central issues of this paper. First, some unanswered questions that pertain to polytomous IRT models implying stochastic ordering were investigated. Second, simulation studies were conducted to evaluate stochastic ordering in practical situations. It was found that for most polytomous IRT models that do not imply stochastic ordering, the sum score can be used safely to order respondents on the latent trait.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.