Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T18:47:56.795Z Has data issue: false hasContentIssue false

Polytomous IRT Models and Monotone Likelihood Ratio of the Total Score

Published online by Cambridge University Press:  01 January 2025

Bas T. Hemker*
Affiliation:
Utrecht University
Klaas Sijtsma
Affiliation:
Utrecht University
Ivo W. Molenaar
Affiliation:
University of Groningen
Brian W. Junker
Affiliation:
Carnegie Mellon University
*
Requests for reprints should be sent to Bas T. Hemker, National Institute for Educational Measurement (Cito), PO Box 1034, 6801 MG Arnhem, THE NETHERLANDS.

Abstract

In a broad class of item response theory (IRT) models for dichotomous items the unweighted total score has monotone likelihood ratio (MLR) in the latent trait θ. In this study, it is shown that for polytomous items MLR holds for the partial credit model and a trivial generalization of this model. MLR does not necessarily hold if the slopes of the item step response functions vary over items, item steps, or both. MLR holds neither for Samejima's graded response model, nor for nonparametric versions of these three polytomous models. These results are surprising in the context of Grayson's and Huynh's results on MLR for nonparametric dichotomous IRT models, and suggest that establishing stochastic ordering properties for nonparametric polytomous IRT models will be much harder.

Type
Original Paper
Copyright
Copyright © 1996 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Hemker's research was supported by the Netherlands Research Council, Grant 575-67-034. Junker's research was supported in part by the National Institutes of Health, Grant CA54852, and by the National Science Foundation, Grant DMS-94.04438.

References

Andersen, E. B. (1980). Discrete statistical models with social science applications, Amsterdam: North Holland.Google Scholar
Andrich, D. (1978). A rating scale formulation for ordered response categories. Psychometrika, 43, 561573.CrossRefGoogle Scholar
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 2951.CrossRefGoogle Scholar
Ellis, J. L., van den Wollenberg, A. L. (1993). Local homogeneity in latent trait models. A characterization of the homogeneous monotone IRT model. Psychometrika, 58, 417429.CrossRefGoogle Scholar
Grayson, D. A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio. Psychometrika, 53, 383392.CrossRefGoogle Scholar
Huynh, H. (1994). A new proof for monotone likelihood ratio for the sum of independent bernoulli random variables. Psychometrika, 59, 7779.CrossRefGoogle Scholar
Junker, B. W. (1991). Essential independence and likelihood-based ability estimation for polytomous items. Psychometrika, 56, 255278.CrossRefGoogle Scholar
Junker, B. W. (1993). Conditional association, essential independence and monotone unidimensional item response models. The Annals of Statistics, 21, 13591378.CrossRefGoogle Scholar
Lehmann, E. L. (1959). Testing statistical hypotheses, New York: Wiley.Google Scholar
Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 149158.Google Scholar
Lord, F. M. (1980). Applications of item response theory to practical testing problems, Hillsdale, NJ: Erlbaum.Google Scholar
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149174.CrossRefGoogle Scholar
Meijer, R. R., Sijtsma, K., Smid, N. G. (1990). Theoretical and empirical comparison of the Mokken and the Rasch approach to IRT. Applied Psychological Measurement, 14, 283298.CrossRefGoogle Scholar
Mokken, R. J. (1971). A theory and procedure of scale analysis, New York/Berlin: De Gruyter.CrossRefGoogle Scholar
Mokken, R. J., Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses. Applied Psychological Measurement, 6, 417430.CrossRefGoogle Scholar
Molenaar, I. W. (1982). Mokken scaling revisited. Kwantitatieve Methoden, 3(8), 145164.Google Scholar
Molenaar, I. W. (1986). Een vingeroefening in item response theorie voor drie geordende antwoordcategorieën [An exercise in item response theory for three ordered response categories]. In Pikkemaat, G. F., Moors, J. J. A. (Eds.), Liber Amicorum Jaap Muilwijk (pp. 3957). Groningen, The Netherlands: Econometrisch Instituut.Google Scholar
Molenaar, I. W. (in press). Nonparametric models for polytomous responses. In van der Linden, W. J. & Hambleton, R. K. (Eds.), Handbook of modern psychometrics. New York: Springer.Google Scholar
Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159176.CrossRefGoogle Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenhagen, Denmark: Nielsen & Lydiche.Google Scholar
Rosenbaum, P. R. (1985). Comparing distributions of item responses for two groups. British Journal of Mathematical and Statistical Psychology, 38, 206215.CrossRefGoogle Scholar
Samejima, F. (1969). Estimation of latent trait ability using a response pattern of graded scores. Psychometrika Monograph No. 17, 34(4, Pt. 2).Google Scholar
Samejima, F. (1972). A general model for free-response data. Psychometrika Monograph No. 18, 37(4, Pt. 2).Google Scholar
Stout, W. F. (1990). A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation. Psychometrika, 55, 293325.CrossRefGoogle Scholar
Thissen, D., Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51, 567577.CrossRefGoogle Scholar
Verhelst, N. D., Glas, C. A. W. (1995). The one parameter logistic model. In Fischer, G. H., Molenaar, I. W. (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 215237). New York: Springer-Verlag.Google Scholar