We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Assume that G is a solvable group whose elementary abelian sections are all finite. Suppose, further, that p is a prime such that G fails to contain any subgroups isomorphic to Cp∞. We show that if G is nilpotent, then the pro-p completion map induces an isomorphism for any discrete -module M of finite p-power order. For the general case, we prove that G contains a normal subgroup N of finite index such that the map is an isomorphism for any discrete -module M of finite p-power order. Moreover, if G lacks any Cp∞-sections, the subgroup N enjoys some additional special properties with respect to its pro-p topology.
We investigate extensions of S. Solecki's theorem on closing off finite partial isometries of metric spaces [11] and obtain the following exact equivalence: any action of a discrete group Γ by isometries of a metric space is finitely approximable if and only if any product of finitely generated subgroups of Γ is closed in the profinite topology on Γ.
Natural algorithms to compute rational expressions for recognizablelanguages, even those which work well in practice, may produce very longexpressions. So, aiming towards the computation of the commutative image of arecognizable language, one should avoid passing through an expressionproduced this way.We modify here one of those algorithms in order to compute directly a semilinear expression for the commutative imageof a recognizable language. We also give a secondmodification of the algorithm which allows the direct computation of theclosure in the profinite topology of the commutative image. As anapplication, we give a modification of an algorithm for computing the Abelian kernel of a finite monoid obtainedby the author in 1998 which is much more efficient in practice.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.