Pole figures are often used to present crystal orientation data. The huge number of single orientation measurements acquired by electron backscatter diffraction (EBSD) poses a challenge for pole figure representation due to the large number of calculations required. This significantly reduces the speed at which the data may be rotated and affects the ability to switch between different projection types. In the present work, it will be shown that satisfactory representation of orientation data in different projection types can generally be achieved by an imaging of a spherical projection. With this approach, explicit calculation of the projections is no longer required, allowing for both real-time dataset rotation and real-time switching between all projection types relevant to materials science. The technique can be applied to any other directional property distribution, for example, not only for EBSD orientation presentation.