We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The objective of this chapter is to discuss the concept of base functions and the basics of using some simple base functions to represent other functions. These base functions are needed in many commonly used analyses. An example of using base functions to approximate an almost arbitrary target function is the Taylor series expansion we have discussed. Here we say that an “almost arbitrary function” is not really arbitrary because, in theory, the target function must be differentiable an arbitrary number of times for the Taylor series expansion to be valid. The concept of linear independence of functions is important in understanding the selection of base functions.
Chapter 9 describes simulation or sampling methods for reliability assessment. The chapter begins by describing methods for generation of pseudorandom numbers for prescribed univariate or multivariate distributions. Next, the ordinary Monte Carlo simulation (MCS) method is described. It is shown that for small failure probabilities, which is the case in most structural reliability problems, the number of samples required by MCS for a given level of accuracy is inversely proportional to the failure probability. Thus, MCS is computationally demanding for structural reliability problems. Various methods to reduce the computational demand of MCS are introduced. These include the use of antithetic variates and importance sampling. For the latter, sampling around design points and sampling in half-space are presented, the latter for a special class of problems. Other efficient sampling methods described include directional sampling, orthogonal-plane sampling, and subset simulation. For each case, expressions are derived for a measure of accuracy of the estimated failure probability. Methods are also presented for computing parameter sensitivities by sampling. Finally, a method is presented for evaluating certain multifold integrals by sampling. This method is useful in Bayesian updating, as described in Chapter 10.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.