We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We derive a q-supercongruence modulo the third power of a cyclotomic polynomial with the help of Guo and Zudilin’s method of creative microscoping [‘A q-microscope for supercongruences’, Adv. Math.346 (2019), 329–358] and the q-Dixon formula. As consequences, we give several supercongruences including
Swisher [‘On the supercongruence conjectures of van Hamme’, Res. Math. Sci.2 (2015), Article no. 18] and He [‘Supercongruences on truncated hypergeometric series’, Results Math.72 (2017), 303–317] independently proved that Van Hamme’s (G.2) supercongruence holds modulo
$p^4$
for any prime
$p\equiv 1\pmod {4}$
. Swisher also obtained an extension of Van Hamme’s (G.2) supercongruence for
$p\equiv 3 \pmod 4$
and
$p>3$
. In this note, we give new one-parameter generalisations of Van Hamme’s (G.2) supercongruence modulo
$p^3$
for any odd prime p. Our proof uses the method of ‘creative microscoping’ introduced by Guo and Zudilin [‘A q-microscope for supercongruences’, Adv. Math.346 (2019), 329–358].
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.