We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper deals with ergodic theorems for particular time-inhomogeneous Markov processes, whose time-inhomogeneity is asymptotically periodic. Under a Lyapunov/minorization condition, it is shown that, for any measurable bounded function f, the time average
$\frac{1}{t} \int_0^t f(X_s)ds$
converges in
$\mathbb{L}^2$
towards a limiting distribution, starting from any initial distribution for the process
$(X_t)_{t \geq 0}$
. This convergence can be improved to an almost sure convergence under an additional assumption on the initial measure. This result is then applied to show the existence of a quasi-ergodic distribution for processes absorbed by an asymptotically periodic moving boundary, satisfying a conditional Doeblin condition.
We study the probability theory of countable dense random subsets of (uncountably infinite) Polish spaces. It is shown that if such a set is stationary with respect to a transitive (locally compact) group of symmetries then any event which concerns the random set itself (rather than accidental details of its construction) must have probability zero or one. Indeed the result requires only quasi-stationarity (null-events stay null under the group action). In passing, it is noted that the property of being countable does not correspond to a measurable subset of the space of subsets of an uncountably infinite Polish space.
In the present paper we study three aspects in the theory of non-homogeneous Markov systems under the continuous-time formulation. Firstly, the relationship between stability and quasi-stationarity is investigated and conditions are provided for a quasi-stationary structure to be stable. Secondly, the concept of asymptotic attainability is studied and the possible regions of asymptotically attainable structures are determined. Finally, the cyclic case is considered, where it is shown that for a system in a periodic environment, the relative structure converges to a periodic vector, independently of the initial distribution. Two numerical examples illustrate the above theoretical results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.