We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The success of radiation therapy for cancer patients is dependent on the ability to deliver a total tumouricidal radiation dose capable of eradicating all cancer cells within the clinical target volume, however, the radiation dose tolerance of the surrounding healthy tissues becomes the main dose-limiting factor. The normal tissue adverse effects following radiotherapy are common and significantly impact the quality of life of patients. The likelihood of developing these adverse effects following radiotherapy cannot be predicted based only on the radiation treatment parameters. However, there is evidence to suggest that some common genetic variants are associated with radiotherapy response and the risk of developing adverse effects. Radiation genomics is a field that has evolved in recent years investigating the association between patient genomic data and the response to radiation therapy. This field aims to identify genetic markers that are linked to individual radiosensitivity with the potential to predict the risk of developing adverse effects due to radiotherapy using patient genomic information. It also aims to determine the relative radioresponse of patients using their genetic information for the potential prediction of patient radiation treatment response.
Methods and materials
This paper reports on a review of recent studies in the field of radiation genomics investigating the association between genomic data and patients response to radiation therapy, including the investigation of the role of genetic variants on an individual’s predisposition to enhanced radiotherapy radiosensitivity or radioresponse.
Conclusion
The potential for early prediction of treatment response and patient outcome is critical in cancer patients to make decisions regarding continuation, escalation, discontinuation, and/or change in treatment options to maximise patient survival while minimising adverse effects and maintaining patients’ quality of life.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.