We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we give a proof of the Green–Osher inequality in relative geometry using the minimal convex annulus, including the necessary and sufficient condition for the case of equality.
In [TVa], Bertrand Toën and Michel Vaquié defined a scheme theory for a closed monoidal category ( ⊗1). In this article, we define a notion of smoothness in this relative (and not necessarily additive) context which generalizes the notion of smoothness in the category of rings. This generalisation consists in replacing homological finiteness conditions by homotopical ones, using the Dold-Kan correspondence. To do this, we provide the category s of simplicial objects in a monoidal category and all the categories sA-mod, sA-alg (A ∈ sComm()) with compatible model structures using the work of Rezk [R]. We then give a general notion of smoothness in sComm(). We prove that this notion is a generalisation of the notion of smooth morphism in the category of rings and is stable under composition and homotopy pushouts. Finally we provide some examples of smooth morphisms, in particular in ℕ-alg and Comm(Set).
In [TV], Bertrand Toën and Michel Vaquié define a scheme theory for a closed monoidal category (,⊗, 1) One of the key ingredients of this theory is the definition of a Zariski topology on the category of commutative monoidal objects in . The purpose of this article is to prove that under some hypotheses, Zariski open subobjects of affine schemes can be classified almost as in the usual case of rings (ℤ-mod,⊗,ℤ). The main result states that for any commutative monoidal object A in , the locale of Zariski open subobjects of the affine scheme Spec(A) is associated to a topological space whose points are prime ideals of A and whose open subsets are defined by the same formula as in rings. As a consequence, we can compare the notions of scheme over in [D] and in [TV].
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.