Retained austenite is an important characteristic of properly heat-treated steel components, particularly gears and shafts, that will be subjected to long-term use and wear. Normally, either X-ray diffraction or optical microscopy techniques are used to determine the volume percent of retained austenite present in steel components subjected to specific heat-treatment regimes. As described in the literature, a number of phenomenological, experimental, and calculation factors can influence the volume fraction of retained austenite determined from X-ray diffraction measurements. However, recent disagreement between metallurgical properties, microscopy, and service laboratory values for retained austenite led to a re-evaluation of possible reasons for the apparent discrepancies. Broad, distorted X-ray peaks from un-tempered martensite were found to yield unreliable integrated intensities whereas diffraction peaks from tempered samples were more amenable to profile fitting with standard shape functions, yielding reliable integrated intensities. Retained austenite values calculated from reliable integrated intensities were found to be consistent with values obtained by Rietveld refinement of the diffraction patterns. The experimental conditions used by service laboratories combined with a poor choice of diffraction peaks were found to be sources of retained austenite values containing significant bias.