We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 3 provides an in-depth introduction to TLC, starting with an intuitive explanation of its operating principle, followed by a description of its electrical characteristics and coupler and transceiver designs. It then drills down into design variations for four application areas. The first is the implementation of a multidrop bus, where three TLC derivatives for a master–slave, multidrop bus, single-ended-to-differential conversion, and a multimaster, multidrop bus respectively are presented. The second is smartphone application, where two small-footprint TLC derivatives including one for extended communication distance across the thickness of the smartphone are described, together with a high-EMC immunity transceiver for robust operation in the high-EMI environment of a smartphone. The third is adaptation for automotive LAN, where a TLC derivative compatible with the twisted pair wiring used by automotive LANs is introduced, together with a high-EMC immunity transceiver developed to meet the stringent EMI and EMS requirements demanded of automotive electronics. The fourth is the implementation of a completely wireless interface for SSD application. The system architecture is presented, together with a TLC interface nested within a wireless power interface. System-level challenges in startup and error correction and their solutions are also explained.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.