We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For most people, the most obvious thought or image that sexual reproduction brings to mind is that of sexual intercourse, a mating between two individuals of opposite sexes, which will result in the birth of their common offspring. While biparental reproduction is certainly the most common mode of sexual reproduction among all eukaryotes, it is not the only one, and the way it is carried out can depart substantially, in many different ways, from the ‘canonical’ description above. What is common to all these modes is that two distinct sexually compatible individuals (parents) undertake a sexual exchange that leads to the generation of new individuals with a genetic constitution obtained from the association and/or the reassortment of those parents’ genomes. The key event in this mode of reproduction, technically called amphigony, is the fusion of two gametes or two nuclei functioning as gametes (syngamy), each produced by one parent, to form a zygote. While in species with anisogamy (i.e. with distinct male and female gametes; Chapter 4), only gametes of opposite sex are compatible, the two individuals that produce them are not necessarily a male and a female.
We are all familiar with the changes in an organism during development, followed by its reproduction, which are repeated generation after generation. Biologists describe this development–reproduction sequence as the life cycle: the series of transformations and reproductive events that, from a given stage of life of an organism, leads to the corresponding stage in a subsequent generation. We can describe a biological cycle as going from zygote to zygote, but also from adult to adult, or from embryo to embryo: in a cyclical process, the choice of the ‘initial phase’ is arbitrary or conventional, as the notorious ‘the chicken or the egg’ dilemma beautifully illustrates.
In the course of their lives, organisms spend time and energy on a number of activities and functions, of which reproduction is only one – think of growth, defence against predators and pests, and others. How many resources are used for reproduction, how much time is devoted to it and how this time is distributed over the course of life are all elements that characterize the different reproductive strategies. From an even wider perspective, in those organisms that at certain times in their lives can opt for one or another reproductive mode (e.g. sexual or asexual reproduction, as in many plants and many marine invertebrates), a reproductive strategy includes also this reproductive policy.
On February 1997 the birth was announced of a sheep named Dolly, the first mammal to be cloned from an adult cell of a mother individual. The event attracted enormous media attention. Dolly, born on 5 July 1996, actually had three ‘mothers’: one provided the egg (whose nucleus was removed), another the nucleus with the DNA picked out from a somatic cell (i.e. a cell of the body not specialized for reproduction), while the third mother carried the cloned embryo in her womb until parturition.
Ever since living beings arose from non-living organic compounds on a primordial planet, more than 3.5 billion years ago, a multitude of organisms has unceasingly flourished by means of the reproduction of pre-existing organisms. Through reproduction, living beings generate other material systems that to some extent are of the same kind as themselves. The succession of generations through reproduction is an essential element of the continuity of life. Not surprisingly, the ability to reproduce is acknowledged as one of the most important properties to characterize living systems. But let’s step back and put reproduction in a wider context, the endurance of material systems.
Acquiring the traits specific to a given sex, during early development or at another point during the life of an organism, is usually a complex process. Although the sex condition of an individual is conventionally defined based on the type of gametes it is able to produce (Chapter 4), the sex-specific phenotype is generally not limited to the organs of reproduction. Each of these characters can maintain a certain degree of independence from other sexual traits in the same organism, be subject to different developmental control, and show different degrees of sensitivity to the environment. Therefore, sexual differentiation extends to the development of the secondary sexual characters, which can be morphological, physiological, behavioural, or combinations of these. An exploration of this fascinating subject requires some preliminary clarification about systems and mechanisms of sex determination and sex differentiation.
In Chapter 1 we defined sexual reproduction as a form of reproduction that generates new individuals carrying a genome obtained by the association and/or the reassortment of genetic material from more than one source. In the most familiar form of sexual reproduction, the new genome is formed by the union of (partial) copies of the genomes of two parents through the fusion of two special cells produced for that purpose, the gametes, into a single cell, the zygote. This is the way most multicellular eukaryotes, ourselves included, reproduce sexually.
A zygote does not necessarily derive from the fusion of gametes or gametic nuclei produced by different individuals. Both egg and sperm may instead be produced by the same individual, a sufficient simultaneous hermaphrodite (Chapter 4). In this case, the offspring has only one parent. However, the gametes that merge are the products of independent processes of meiosis undergone by different germ cells, although in the same individual: this distinguishes self-fertilization (or selfing) from some forms of parthenogenesis where there is the fusion of two of the four nuclei deriving from the same meiosis, as we will see in the next sections (Figure 6.1).
Our understanding of reproduction and reproductive processes is often biased towards the behaviour of organisms most familiar to us. As such, the amazing disparity of the phenomena of reproduction and sex is often overlooked. Understanding Reproduction addresses all the main facets of this large chapter of the life sciences, including discussions of asexual reproduction, parthenogenesis, sex determination, reproductive effort, and much more. The book features an abundance of examples from across the tree of life, including animals, plants, fungi, protists and bacteria. Written in an accessible and easy to digest style, overcoming the intimidating diversity of the technical terminology, this book will appeal to interested general readers, biologists, science educators, philosophers and medical doctors.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.