Let $P$ be a maximal proper parabolic subgroup of a connected simple linear algebraic group $G$, defined over $\mathbb{C}$, such that $n\,:=\,{{\dim}_{\mathbb{C}}}\,G/P\,\ge \,4$. Let $\iota :\,Z\,\to \,G/P$ be a reduced smooth hypersurface of degree at least $\left( n\,-\,1 \right)\,.\,\deg \text{ree}\left( T\left( G/P \right) \right)/n$. We prove that the restriction of the tangent bundle ${{\iota }^{*}}\,TG/P$ is semistable.