We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Section 2.3 on Brun’s pure sieve gives some results which demonstrate its strength, for example, how the sieve can be used to derive both lower and upper bounds. Section 2.4 gives the estimation of Brun’s constant. Section 2.5 introduces a form of the Selberg sieve – it is variations of the sieve that have led to prime gap breakthroughs. An improved estimate is derived counting primes such that the shift by a given even integer is also prime. In Section 2.6 the Selberg sieve is used implicitly to prove the theorem of Bombieri and Davenport which gives a value in terms of the shift, for the leading terms. Section 2.7 has an application of the Selberg sieve to derive a weak form of the Brun–Titchmarsh inequality used later. Section 2.8 gives a description of 10 types of sieve with some key applications, e.g. the sieve of Eratosthenes, Legendre’s sieve, Brun’s combinatorial sieve, the large sieve, and Bombieri’s asymptotic sieve. This is followed by a reader’s guide to some of the main texts on sives. In Section 2.10 there is a discussion of the limits of sieve theory for capturing primes, the famous “parity problem”.
Given a family of varieties $X\rightarrow \mathbb{P}^{n}$ over a number field, we determine conditions under which there is a Brauer–Manin obstruction to weak approximation for 100% of the fibres which are everywhere locally soluble.
In [TV], Bertrand Toën and Michel Vaquié define a scheme theory for a closed monoidal category (,⊗, 1) One of the key ingredients of this theory is the definition of a Zariski topology on the category of commutative monoidal objects in . The purpose of this article is to prove that under some hypotheses, Zariski open subobjects of affine schemes can be classified almost as in the usual case of rings (ℤ-mod,⊗,ℤ). The main result states that for any commutative monoidal object A in , the locale of Zariski open subobjects of the affine scheme Spec(A) is associated to a topological space whose points are prime ideals of A and whose open subsets are defined by the same formula as in rings. As a consequence, we can compare the notions of scheme over in [D] and in [TV].
The authors sharpen a result of Baker and Harman (1995), showing that [x, x + x0.525] contains prime numbers for large x. An important step in the proof is the application of a theorem of Watt (1995) on a mean value containing the fourth power of the zeta function. 2000 Mathematical Subject Classification: 11N05.
It is shown that every sufficiently large integer
congruent to $14$ modulo $240$ may be written as
the sum of $14$ fourth powers of prime numbers, and
that every sufficiently large odd integer may be
written as the sum of $21$ fifth powers of prime
numbers. The respective implicit bounds $14$ and $21$
improve on the previous bounds $15$ (following from
work of Davenport) and $23$ (due to Thanigasalam).
These conclusions are established through the
medium of the Hardy-Littlewood method, the proofs
being somewhat novel in their use of estimates
stemming directly from exponential sums over prime
numbers in combination with the linear sieve, rather
than the conventional methods which `waste' a variable
or two by throwing minor arc estimates down to an
auxiliary mean value estimate based on variables not
restricted to be prime numbers. In the work on fifth
powers, a switching principle is applied to a cognate
problem involving almost primes in order to obtain the
desired conclusion involving prime numbers alone. 2000 Mathematics Subject Classification:
11P05, 11N36, 11L15, 11P55.
Let $\mathcal{S}$ denote the set of integers representable as a sum of two squares. Since $\mathcal{S}$ can be described as the unsifted elements of a sieving process of positive dimension, it is to be expected that $\mathcal{S}$ has many properties in common with the set of prime numbers. In this paper we exhibit “unexpected irregularities” in the distribution of sums of two squares in short intervals, a phenomenon analogous to that discovered by Maier, over a decade ago, in the distribution of prime numbers. To be precise, we show that there are infinitely many short intervals containing considerably more elements of $\mathcal{S}$ than expected, and infinitely many intervals containing considerably fewer than expected.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.