We review the current understanding of single-event upsets (SEUs) in microelectronic devices. In recent years, SEUs have been recognized as one of the key reliability concerns for both current and future technologies. We identify the major sources of SEUs that impact many commercial products: (1) alpha particles in packaging materials, (2) background radiation due to cosmic rays, and (3) thermal neutrons in certain device materials. The origins of SEUs are examined from the standpoint of the fundamental atomic and nuclear interactions between the intruding particles (alpha particles, cosmic rays, and thermal neutrons) and semiconductor materials. We analyze field funneling, which is a key mechanism of charge collection in a device struck by an ionizing particle. Next, we formulate how SEU cross sections and SEU rates are calculated and discuss how these basic quantities are related to experiments. Finally, we summarize the major SEU issues regarding modeling, bulk complementary metal oxide semiconductor technologies, and research on future, exploratory technologies.