We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study reflexivity and structural properties of operator algebras generated by representations of the discrete Heisenberg semigroup. We show that the left regular representation of this semigroup gives rise to a semi-simple reflexive algebra. We exhibit an example of a representation that gives rise to a non-reflexive algebra. En route, we establish reflexivity results for subspaces of .
Let be the closed bidisc and T2 be its distinguished boundary. For be a slice map, that is, and Then ker Φαβ is an invariant subspace, and it is not difficult to describe ker Φαβ and In this paper, we study the set of all multipliers for an invariant subspace M such that the common zero set of M contains that of ker Φαβ.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.