We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We motivate the definitions of sets of small doubling and approximate groups, and introduce their basic properties. We show that random sets of integers (suitably defined) have large expected doubling. We prove Freiman’s theorem that a subset of a group of doubling less than 2/3 is close to a finite subgroup. We prove the Plünnecke–Ruzsa inequalities, Ruzsa’s triangle inequality and Ruzsa’s covering lemma. We motivate in detail the definition of an approximate group, and reduce the study of sets of small doubling to the study of finite approximate groups. We show that the notions of small tripling and approximate group are stable under intersections and group homomorphisms. We introduce Freiman homomorphisms and present their basic properties.
Approximate groups have shot to prominence in recent years, driven both by rapid progress in the field itself and by a varied and expanding range of applications. This text collects, for the first time in book form, the main concepts and techniques into a single, self-contained introduction. The author presents a number of recent developments in the field, including an exposition of his recent result classifying nilpotent approximate groups. The book also features a considerable amount of previously unpublished material, as well as numerous exercises and motivating examples. It closes with a substantial chapter on applications, including an exposition of Breuillard, Green and Tao's celebrated approximate-group proof of Gromov's theorem on groups of polynomial growth. Written by an author who is at the forefront of both researching and teaching this topic, this text will be useful to advanced students and to researchers working in approximate groups and related areas.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.