We report a systematic spectroscopical investigation of three plagioclase particles (RB-QD04-0022, RA-QD02-0025-01, and RA-QD02-0025-02) returned by the Hayabusa spacecraft from the asteroid Itokawa, by means of scanning electron microscopy, cathodoluminescence microscopy/spectroscopy, and micro-Raman spectroscopy. The cathodoluminescence properties are used to evaluate the crystallization effects and the degree of space weathering processes, especially the shock-wave history of Itokawa. They provide new insights regarding spectral changes of asteroidal bodies due to space weathering processes. The cathodoluminescence spectra of the plagioclase particles from Itokawa show a defect-related broad band centered at around 450 nm, with a shoulder peak at 425 nm in the blue region, but there are no Mn- or Fe-related emission peaks. The absence of these crystal field-related activators indicates that the plagioclase was formed during thermal metamorphism at subsolidus temperature and extreme low oxygen fugacity. Luminescence characteristics of the selected samples do not show any signatures of the shock-induced microstructures or amorphization, indicating that these plagioclase samples suffered no (or low-shock pressure regime) shock metamorphism. Cathodoluminescence can play a key role as a powerful tool to determine mineralogy of fine-grained astromaterials.