Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T09:50:07.015Z Has data issue: false hasContentIssue false

6 - The Surface Composition of Vesta

from Part II - Key Results from Dawn’s Exploration of Vesta and Ceres

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

Vesta's surface composition provides insights on its internal structure, geological evolution, and space environment. The bulk igneous composition, the link to the howardite–eucrite–diogenite (HED) meteorites, and the differentiation into a crust and a mantle were confirmed by telescopic observations and by the Dawn mission. This chapter presents several key topics. The distribution of indigenous materials helps in understanding the structure and mineralogy of the crust and the thickness of the mantle as an insight to the geological evolution and history of the whole body. Hydroxylated, low-albedo areas indicate exogenous materials and widespread contamination of the surface by carbonaceous chondrites; this main result from the Dawn mission also has implications for the collisional history of Ceres. Finally, the characterization of surficial processes on Vesta clarifies the role of space weathering and lateral mixing. The surface composition studied from telescopic observations, geochemical measurements of the HED meteorites, and from the Dawn mission at Vesta is based on reflectance imaging spectroscopy, high-resolution imagery, and elemental data from gamma-ray and neutron spectroscopy. This chapter includes analyses of data from the Visible and InfraRed mapping spectrometer that benefited from improved instrument calibrations developed after the Dawn mission to Vesta and Ceres.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 81 - 104
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. B. (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the Solar System. Journal of Geophysical Research 79, 4829– 4836.Google Scholar
Adams, J. B. (1975) Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals. In Karr, C. Jr. (ed.), Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals. New York: Academic Press, Inc., pp. 91116.Google Scholar
Adams, J. B., & Goullaud, L. H. (1978) Plagioclase feldspars: Visible and near infrared diffuse reflectance spectra as applied to remote sensing. Proceedings of the 9th Lunar and Planetary Science Conference, March 13–17, Houston, TX, pp. 2901–2909.Google Scholar
Ammannito, E., De Sanctis, M. C., Combe, J.-P, et al. (2015) Compositional variations in the Vestan Rheasilvia basin. Icarus, 259, 194202.Google Scholar
Ammannito, E., De Sanctis, M. C., Palomba, E., et al. (2013) Olivine in an unexpected location on Vesta’s surface. Nature 504, 122125.Google Scholar
Batista, S. F. A., Seixas, T. M., Salgueiro da Silva, M. A., & de Albuquerque, R. M. G. (2014) Mineralogy of V-type asteroids as a constraining tool of their past history. Planetary and Space Science 104, 295309.Google Scholar
Beck, A. W., Lawrence, D. J., Peplowski, P. N., et al. (2015) Using HED meteorites to interpret neutron and gamma-ray data from asteroid 4 Vesta. Meteoritics & Planetary Science 50, 13111337.Google Scholar
Beck, A. W., Lawrence, D. J., Peplowski, P. N., et al. (2017) Igneous lithologies on asteroid (4) Vesta mapped using gamma-ray and neutron data. Icarus 286, 3545.Google Scholar
Beck, A. W., McCoy, T. J., Sunshine, J. M., et al. (2013) Challenges in detecting olivine on the surface of 4 Vesta. Meteoritics & Planetary Science 48, 21552165.Google Scholar
Beck, A. W., & McSween, H. Y. (2010) Diogenites as polymict breccias composed of or- thopyroxenite and harzburgite. Meteoritics & Planetary Science 45, 850872.Google Scholar
Bell, P. M., & Mao, H. K. (1973) Optical and chemical analysis of iron in Luna 20 plagioclase. Geochimica et Cosmochimica Acta 37, 755758.CrossRefGoogle Scholar
Blewett, D. T., Denevi, B. W., Le Corre, L., et al. (2016) Optical space weathering on Vesta: Radiative transfer models and Dawn observations. Icarus 265, 161174Google Scholar
Bradley, J. P., Keller, L. P., Brownlee, D. E., & Thomas, L. (1996) Reflectance spectroscopy of interplanetary dust particles. Meteoritics & Planetary Science 31, 394402.CrossRefGoogle Scholar
Brunetto, R., Loeffler, M. J., Nesvorný, D., et al. (2015) Asteroid surface alteration by space weathering processes. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 597616.Google Scholar
Buchanan, P. C., & Mittlefehldt, D. W. (2003) Lithic components in the paired howardites EET 87503 and EET 87513: Characterization of the regolith of 4 Vesta. Antartic Meteorite Research 16, 128151.Google Scholar
Buchanan, P. C., Zolensky, M. E., & Reid, A. M. (1993) Carbonaceous chondrite clasts in the howardites Bholghati and EET87513. Meteoritics 28, 659669.Google Scholar
Burbine, T. H., Buchanan, P. C., Dolkar, T., & Binzel, R. P. (2009) Pyroxene mineralogies of near-Earth vestoids. Meteoritics & Planetary Science 44, 13311341.Google Scholar
Burbine, T. H., DeMeo, F. E., Rivkin, A. S., & Reddy, V. (2017) Evidence for differentiation among asteroid families. In Elkins-Tanton, L. T., & Weiss, B. P. (eds.), Planetesimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 298320.Google Scholar
Burns, R. G. (1970) Crystal field spectra and evidence of cation ordering in olivine minerals. American Mineralogist 55, 16081632.Google Scholar
Burns, R. G. (1993) Mineralogical Applications of Crystal Field Theory. Cambridge: Cambridge University Press.Google Scholar
Busarev, V. V. (2011) Asteroids 10 Hygiea, 135 Hertha, and 196 Philomela: Heterogeneity of the material from the reflectance spectra. Solar System Research 45, 4352.Google Scholar
Cahill, J. T. S., Blewett, D. T., Nguyen, N. V., et al. (2012) Determination of iron metal optical constants: Implications for ultraviolet, visible, and near-infrared remote sensing of airless bodies. Geophysical Research Letters 39, L10204.Google Scholar
Carrozzo, F. G., Raponi, A., Sanctis, M. C., et al. (2016) Artefacts removal in VIR/DAWN data. Review of Scientific Instruments 87, 124501.Google Scholar
Chapman, C. R., & Salisbury, J. W. (1973) Comparisons of meteorite and asteroid spectral reflectivities. Icarus 19, 507552.Google Scholar
Cheek, L. C., & Pieters, C. M. (2014) Reflectance spectroscopy of plagioclase-dominated mineral mixtures: Implications for characterizing lunar anorthosites remotely. American Mineralogist 99, 18711892.Google Scholar
Clark, R. N. (1983) Spectral properties of mixtures of montmorillonite and dark grains – Implications for remote sensing minerals containing chemically and physically adsorbed water. Journal of Geophysical Research 88, 1063510644.CrossRefGoogle Scholar
Clark, R. N., Swayze, G. A., Gallagher, A., King, T. V. V., & Calvin, W. M. (1993) The US Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 µm, US Geological Survey, Open File Report 93-5922.Google Scholar
Clenet, H., Jutzi, M., Barrat, J.-A., et al. (2014) A deep crust-mantle boundary in the asteroid 4 Vesta. Nature 511, 303306.Google Scholar
Cloutis, E. A., & Gaffey, M. J. (1991) Pyroxene spectroscopy revisited – Spectral–compositional correlations and relationship to geothermometry. Journal of Geophysical Research 96, 22,80922,826.CrossRefGoogle Scholar
Cloutis, E. A., Izawa, M. R. M., Pompilio, L., et al. (2013) Spectral reflectance properties of HED meteorites + CM2 carbonaceous chondrites: Comparison to HED grain size and compositional variations and implications for the nature of low-albedo features on Asteroid 4 Vesta. Icarus 223, 850877.Google Scholar
Combe, J.-Ph. (in preparation) Calcium-poor pyroxenes and plagioclase on the northern regions of Vesta: An alternative interpretation to olivine. Planetary Science Journal.Google Scholar
Combe, J.-Ph., Ammannito, E., Tosi, F., et al. (2015a) Reflectance properties and hydrated material distribution on Vesta: Global investigation of variations and their relationship using improved calibration of Dawn VIR mapping spectrometer. Icarus 259, 2138.Google Scholar
Combe, J.-Ph., Le Mouélic, S., Launeau, P., Irving, A. J., & McCord, T. B. (2011) Imaging spectrometry of meteorite samples relevant to Vesta and the Moon. 42nd Lunar and Planetary Science Conference, March 7–11, The Woodlands, Texas. LPI Contribution No. 1608, p. 2449.Google Scholar
Combe, J.-Ph., Le Mouélic, S., Sotin, C., et al. (2008) Analysis of OMEGA/Mars Express data hyperspectral data using a Multiple-Endmember Linear Spectral Unmixing Model (MELSUM): Methodology and first results. Planetary and Space Science 56, 951975.Google Scholar
Combe, J.-Ph., McCord, T. B., McFadden, L. A., et al. (2015b) Composition of the northern regions of Vesta analyzed by the Dawn mission. Icarus 259, 5371.CrossRefGoogle Scholar
Conel, J. E., & Nash, D. B. (1970) Spectral reflectance and albedo of Apollo 11 lunar samples: Effects of irradiation and vitrification and comparison with telescopic observations. Proceedings of the Apollo 11 Lunar Science Conference 3, 20132024.Google Scholar
Consolmagno, G. J. (1979) REE patterns versus the origin of the basaltic achondrites. Asteroids and Icarus 40, 522530.Google Scholar
Consolmagno, G. J., & Drake, M. J. (1977) Composition and evolution of the eucrite parent body: Evidence from rare earth elements. Geochimica et Cosmochimica Acta 41, 12711282.Google Scholar
Dalton, J. B., & Pitman, K. M. (2012) Low temperature optical constants of some hydrated sulfates relevant to planetary surfaces. Journal of Geophysical Research 117.Google Scholar
Daly, R. T., & Schultz, P. H. (2016) Delivering a projectile component to the vestan regolith. Icarus 264, 919.Google Scholar
Day, J. M. D., Walker, R. J., Qing, L., et al. (2012) Late accretion as a natural consequence of planetary growth. Nature Geoscience 9, 614617.Google Scholar
De Sanctis, M.-C., Ammannito, E., Capria, M.-T., et al. (2013) Vesta’s mineralogical composition as revealed by the visible and infrared spectrometer on Dawn. Meteoritics & Planetary Science 48, 21662184.Google Scholar
De Sanctis, M. C., Combe, J.-P., Ammannito, E., et al. (2012) Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the Dawn mission. The Astrophysical Journal Letters 758, L36.Google Scholar
De Sanctis, M. C., Coradini, A., Ammannito, E., et al. (2011) The VIR spectrometer. Space Science Reviews 163, 329369.Google Scholar
Denevi, B. W., Blewett, D. T., Buczkowski, D. L., et al. (2012) Pitted terrain on Vesta and implications for the presence of volatiles. Science 338, 246.Google Scholar
Drake, M. J. (2001) The eucrite/Vesta story. Meteoritics & Planetary Science 36, 501513.Google Scholar
Feierberg, M. H., Larson, H., Fink, U., & Smith, H. (1980) Spectroscopic evidence for at least two achondritic parent bodies. Geochimica et Cosmochimica Acta 44, 513521.Google Scholar
Feierberg, M. H., Lebofsky, L. A., & Tholen, D. J. (1985) The nature of C-class asteroids from 3-μm spectrophotometry. Icarus 63, 183191.Google Scholar
Fornasier, S., Lantz, C., Barucci, M. A., & Lazzarin, M. (2014) Aqueous alteration on Main Belt primitive asteroids: Results from visible spectroscopy. Icarus 233, 163178.CrossRefGoogle Scholar
Fornasier, S., Mottola, S., Barucci, M. A., et al. (2011) Photometric observations of asteroid 4 Vesta by the OSIRIS cameras onboard the Rosetta spacecraft. Astronomy & Astrophysics 533, 131146.Google Scholar
Gaffey, M. J. (1976) Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research 81, 905920.Google Scholar
Gaffey, M. J. (1997) Surface lithologic heterogeneity of Asteroid 4 Vesta Icarus 127, 130157.Google Scholar
Gaffey, M. J. (2010) Space weathering and the interpretation of asteroid reflectance spectra. Icarus 209, 564574.Google Scholar
Gaffey, M. J., Reddy, V., Fieber-Beyer, S., & Cloutis, E. A. (2015) Asteroid (354) Eleonora: Plucking an odd duck. Icarus 250, 623638.Google Scholar
Gounelle, M. J., Zolensky, M. E., Liou, J.-C., Bland, P. A., & Alard, O. (2003) Mineralogy of carbonaceous chondritic microclasts in howardites: Identification of C2 fossil micrometeorites. Geochimica et Cosmochimica Acta 67, 507527.Google Scholar
Greenwood, R. C., Franchi, I. A., Jambon, A., Barrat, J. A., & Burbine, T. H. (2006) Oxygen isotope variation in stony-iron meteorites. Science 313, 17631765.Google Scholar
Hapke, B. (1981) Bidirectional reflectance spectroscopy: 1. Theory. Journal of Geophysical Research 86, 30393054.Google Scholar
Hasegawa, S., Hiroi, T., Ishiguro, M., et al. (2004) Spectroscopic observations of asteroid 4 Vesta from 1.9 to 3.5 microns: Evidence of hydrated and/or hydroxylated minerals. 35th Lunar and Planetary Science Conference, March 15–19, League City, TX, abstract# 1458.Google Scholar
Hasegawa, S., Murakawa, K., Ishiguro, M., et al. (2003) Evidence of hydrated and/or hydroxylated minerals on the surface of asteroid 4 Vesta. Geophysical Research Letters 30, 2123.Google Scholar
Hazen, R. M., Bell, P. M., & Mao, H. K. (1978) Effects of compositional variation on absorption spectra of lunar pyroxenes. Proceedings of the 9th Lunar and Planetary Science Conference, March 13–17, Houston, TX, 3. (A79–39253 16-91) New York, Pergamon Press, Inc., pp. 2919–2934.Google Scholar
Hiroi, T., Abe, M., Kitazato, K., et al. (2006) Developing space weathering on the asteroid 25143 Itokawa. Nature 443, 5658.Google Scholar
Hunt, G. R. (1977) Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42, 501513.Google Scholar
Ikeda, Y., & Takeda, H. (1985) A model for the origin of basaltic achondrites based on the Yamato 7308 howardite. Journal of Geophysical Research 90, C649C663.Google Scholar
Jaumann, R., Nass, A., Otto, K., et al. (2014) The geological nature of dark material on Vesta and implications for the subsurface structure. Icarus 240, 319.Google Scholar
Jutzi, M., Asphaug, E., Gillet, P., Barrat, J.-A., & Benz, W. (2013) The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature 494, 207210.Google Scholar
Klima, R. L., Dyar, M. D., & Pieters, C. M. (2011) Near‐infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure. Meteoritics & Planetary Science 46, 379395.Google Scholar
Klima, R. L., Pieters, C. M., & Dyar, M. D. (2007) Spectroscopy of synthetic Mg‐Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared. Meteoritics & Planetary Science 42, 235253.Google Scholar
Klima, R. L., Pieters, C. M., & Dyar, M. D. (2008) Characterization of the 1.2 μm M1 pyroxene band: Extracting cooling history from near‐IR spectra of pyroxenes and pyroxene‐dominated rocks. Meteoritics & Planetary Science 43, 15911604.Google Scholar
Lantz, C., Binzel, R. P., & DeMeo, F. E. (2018) Space weathering trends on carbonaceous asteroids: A possible explanation for Bennu’s blue slope? Icarus 302, 1017.Google Scholar
Lapôtre, M. G. A., Ehlmann, B. L., & Minson, S. E. (2017) A probabilistic approach to remote compositional analysis of planetary surfaces. Journal of Geophysical Research Planets 122, 9831009.Google Scholar
Larson, H. P. (1977) Asteroid surface compositions from infrared spectroscopic observations: Results and prospects. In Delsemme, A. H. (ed.), Comet, Asteroids, MeteoritesToledo, OH: University of Toledo Press, pp. 219228.Google Scholar
Lawrence, D. J., Peplowski, P. N., Prettyman, T. H., et al. (2013) Constraints on Vesta’s elemental composition: Fast neutron measurements by Dawn’s gamma ray and neutron detector. Meteoritics & Planetary Science 48, 22712288.Google Scholar
Le Corre, L., Reddy, V., Sanchez, J. A., et al. (2015) Exploring exogenic sources for the olivine on Asteroid (4) Vesta. Icarus 258, 483499.Google Scholar
Le Corre, L., Reddy, V., Schmedemann, N., et al. (2013) Olivine or impact melt: Nature of the “Orange” material on Vesta from Dawn. Icarus 226, 15681594.Google Scholar
Lebofsky, L. A. (1980) Infrared reflectance spectra of asteroids: A search for water of hydration. Astronomical Journal 85, 573585.Google Scholar
Li, J.-Y., Mittlefehldt, D. W., Pieters, C. M., et al. (2012) Investigating the origin of bright materials on Vesta: Synthesis, conclusions, and implications. Lunar and Planetary Science Conference, 43, Abstract #2381.Google Scholar
Loeffler, M. J., Baragiola, R. A., & Murayama, M. (2008) Laboratory simulations of redeposition of impact ejecta on mineral surfaces. Icarus 196, 285292.Google Scholar
Loeffler, M. J., Dukes, C. A., & Baragiola, R. A. (2009) Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind. Journal of Geophysics Research 114, E03003.Google Scholar
Mann, A. (2018) Bashing holes in the tale of Earth’s troubled youth. Nature 553, 393395.Google Scholar
Marchi, S., Bottke, W. F., Cohen, B., et al. (2013) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience 6, 303307.Google Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy 3, 140145.Google Scholar
Matsuoka, M., Nakamura, T., Hiroi, T., et al. (2020) Space weathering simulation with low-energy laser irradiation of Murchison CM chondrite for reproducing micrometeoroid bombardments on C-type asteroids. The Astrophysical Journal Letters 890, 112.Google Scholar
Mayne, R. G., McSweenJr., H. Y., McCoy, T. J., & Gale, A. (2009) Petrology of the unbrecciated eucrites, Geochimica et Cosmochimica Acta 73, 794819.Google Scholar
McCord, T. B., Adams, J. B., & Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science 168, 14451447.Google Scholar
McCord, T. B., Li, J.-Y., Combe, J.-P., et al. (2012) Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature 491, 8386.Google Scholar
McCord, T. B., & Scully, J. E. C. (2015) The composition of Vesta from the Dawn mission. Icarus 259, 19.Google Scholar
McFadden, L. A., McCord, T. B., & Pieters, C. M. (1977) Vesta: The first pyroxene band from new spectroscopic measurements. Icarus 31, 439446.Google Scholar
McSween, H. Y., Ammannito, E., Reddy, V., et al. (2013) Composition of the Rheasilvia basin, a window into Vesta’s interior. Journal of Geophysical Research: Planets 118, 335346.Google Scholar
Mittlefehldt, D. W. (1994) The genesis of diogenites and HED parent body petrogenesis. Geochimica et Cosmochimica Acta 58, 15371552.Google Scholar
Mittlefehldt, D. W. (2015) Asteroid (4) Vesta: I. The howardite–eucrite–diogenite (HED) clan of meteorites. Chemie der Erde 75, 155183.Google Scholar
Mittlefehldt, D. W., & Lindstrom, M. M. (1993) Geochemistry and petrology of a suite of ten Yamato HED meteorites. Seventeenth Symposium on Antarctic Meteorites. Proceedings of the NIPR Symposium, No. 6, August 19–21, 1992, National Institute of Polar Research, Tokyo, 268.Google Scholar
Murchie, S., Robinson, M., Clark, B. E., et al. (2002) Color variations on Eros from NEAR multispectral imaging. Icarus 155, 145168.Google Scholar
Nakamura, T., Noguchi, T., Tanaka, M., et al. (2011) Itokawa dust particles: A direct link between S-type asteroids and ordinary chondrites. Science 333, 1113.Google Scholar
Nathues, A., Hoffmann, M., Cloutis, E. A., et al. (2014) Detection of serpentine in exogenic carbonaceous chondrite material on Vesta from Dawn FC data. Icarus 239, 222237.Google Scholar
Nathues, A., Hoffmann, M., Schäfer, M., et al. (2015) Exogenic olivine on Vesta from Dawn Framing Camera color data. Icarus 258, 467482.Google Scholar
Noble, S. K., Keller, L. P., & Pieters, C. M. (2011) Evidence of space weathering in regolith breccias II: Asteroidal regolith breccias. Meteoritics & Planetary Science 45, 20072015.Google Scholar
Noble, S. K., Pieters, C. M., & Keller, L. P. (2005) Evidence of space weathering in regolith breccias I: Lunar regolith breccias. Meteoritics & Planetary Science 40, 397408.Google Scholar
Noble, S. K., Pieters, C. M., & Keller, L. P. (2007) An experimental approach to understanding the optical effects of space weathering. Icarus 192, 629642.Google Scholar
Noble, S. K., Pieters, C. M., Taylor, L. A., et al. (2001) The optical properties of the finest fraction of lunar soil: Implications for space weathering. Meteoritics & Planetary Science 36, 3142.Google Scholar
Noguchi, T., Nakamura, T., Kimura, M., et al. (2011) Incipient space weathering observed on the surface of Itokawa dust particles. Science 333, 1121.Google Scholar
O’Brien, D. P., & Sykes, M. V. (2011) The origin and evolution of the asteroid belt – Implications for Vesta and Ceres. Space Science Reviews 163, 4161.Google Scholar
Palomba, E., Combe, J. P., McCord, T. B., et al. (2012) Composition and mineralogy of dark material deposits on Vesta. 43rd Lunar and Planetary Science Conference, March 19–23, The Woodlands, TX. LPI Contribution No. 1659, id. 1930.Google Scholar
Palomba, E., Longobardo, A., De Sanctis, M., et al. (2014) Composition and mineralogy of dark material units on Vesta. Icarus, 240, 5872.Google Scholar
Palomba, E., Longobardo, A., De Sanctis, M., et al. (2015) Detection of new olivine-rich locations on Vesta. Icarus 258, 120134.Google Scholar
Peplowski, P. N., Lawrence, D. J., Prettyman, T. H., et al. (2013) Compositional variability on the surface of 4 Vesta revealed through GRaND measurements of high‐energy gamma rays. Meteoritics & Planetary Science 48, 22522270.Google Scholar
Pieters, C. M. (1983) Strength of mineral absorption features in the transmitted component of near-infrared reflected light’ first results from RELAB. Journal of Geophysical Research 88, 95349544.Google Scholar
Pieters, C. M., Ammannito, E., Blewett, D. T., et al. (2012) Distinctive space weathering on Vesta from regolith mixing processes. Nature 491, 7982.Google Scholar
Pieters, C. M., Taylor, L. A., & Noble, S. K. (2000) Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteoritics & Planetary Science 35, 11011107.Google Scholar
Poulet, F., Ruesch, O., Langevin, Y., & Hiesinger, H. (2015) Modal mineralogy of the urface of Vesta: Evidence for ubiquitous olivine and identification of meteorite analogue. Icarus 253, 364377.Google Scholar
Prettyman, T. H. (2014) Dawn GRaND map of hydrogen on Vesta, data set DAWN-A-GRAND-5-VESTA-HYDROGEN-MAP-V1.0. NASA Planetary Data System.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science 338, 242.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2013) Neutron absorption constraints on the composition of 4 Vesta. Meteoritics & Planetary Science 48, 22112236.Google Scholar
Prettyman, T. H., Yamahita, Y., Reedy, R. C., et al. (2015) Concentrations of potassium and thorium within Vesta’s regolith. Icarus 259, 3952.Google Scholar
Prettyman, T. H., Yamashita, N., Ammannito, E., et al. (2019) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus 318, 4255.Google Scholar
Raymond, C. A., Russell, C. T., & McSween, H. Y. (2017) Dawn at Vesta: Paradigms and paradoxes. In Elkins-Tanton, L., & Weiss, B. (eds.), Planetesimals – Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 321340.Google Scholar
Rayner, J. T., Toomey, D. W., Onaka, P. M., et al. (2003) SpeX: A medium-resolution 0.8–5.5 micron spectrograph and imager for the NASA infrared telescope facility. The Publications of the Astronomical Society of the Pacific 115, 362382.Google Scholar
Reddy, V., Le Corre, L., O’Brien, D. P., et al. (2012a) Delivery of dark material to Vesta via carbonaceous chondritic impacts [Erratum: 2013Icar..223.632R]. Icarus 221, 544559.Google Scholar
Reddy, V., Li, J.-Y., Le Corre, L., et al. (2013) Comparing Dawn, Hubble Space Telescope, and ground-based interpretations of (4) Vesta. Icarus 226, 11031114.Google Scholar
Reddy, V., Nathues, A., & Gaffey, M. J. (2011) First fragment of Asteroid 4 Vesta’s mantle detected. Icarus 212, 175179.Google Scholar
Reddy, V., Nathues, A., Le Corre, L., et al. (2012b) Color ad albedo heterogeneity of Vesta from Dawn. Science 336, 700704.Google Scholar
Righter, K., & Drake, M. J. (1997) A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science 32, 929944.Google Scholar
Rivkin, A. S., McFadden, L. A., Binzel, R. P., & Sykes, M. (2006) Rotationally-resolved spectroscopy of Vesta I: 2 4 μm region. Icarus 180, 464472.Google Scholar
Rousseau, B., Raponi, A., Ciarniello, M., et al. (2019) Correction of the VIR-visible data set from the Dawn mission. Review of Scientific Instruments 90, 123110.Google Scholar
Ruesch, O., Hiesinger, H., De Sanctis, M., et al. (2014) Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data. Journal of Geophysical Research: Planets 119, 20782108.Google Scholar
Russell, C. T., & Raymond, C. A. (2011) The Dawn mission to Vesta and Ceres. Space Science Reviews 163, 323.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science 336, 684.Google Scholar
Ruzicka, A., Snyder, G. A., & Taylor, L. A. (1997) Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science 32, 825840.Google Scholar
Schenk, P., O’Brien, D. P., Marchi, S., et al. (2012) The geologically recent giant impact basins at Vesta’s south pole. Science 336, 694697.Google Scholar
Schröder, S. E., Mottola, S., & Keller, H. (2013) Resolved photometry of Vesta reveals physical properties of Crater Regolith. Planetary and Space Science 85, 198213.Google Scholar
Scott, E. R. D., Bottke, W. F., Marchi, S., & Delaney, J. S. (2014) How did mesosiderites form and do they come from Vesta or a Vesta-like body? 45th Lunar and Planetary Science Conference, March 17–21, The Woodlands, TX, 2260.Google Scholar
Shearer, C. K., Fowler, G. W., & Papike, J. J. (1997) Petrogenetic models for magmatism on the eucrite parent body: Evidence from orthopyroxene in diogenites. Meteoritics & Planetary Science 32, 877889.Google Scholar
Spohn, T., Sohl, F., & Breuer, D. (1998) Mars. The Astronomy and Astrophysics Review 8, 181235.Google Scholar
Sunshine, J. M., & Pieters, C. M. (1993) Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model. Journal of Geophysical Research 98, 90759087.Google Scholar
Sunshine, J. M., & Pieters, C. M. (1998) Determining the composition of olivine from reflectance spectroscopy. Journal of Geophysical Research 103, 1367513688.Google Scholar
Sunshine, J. M., Pieters, C. M. & Pratt, S. F. (1990) Deconvolution of mineral absorption bands: An improved approach. Journal of Geophysical Research 95, 69556966.Google Scholar
Takeda, H. (1979) A layered-crust model of a Howardite parent body. Icarus 40, 455470.Google Scholar
Takeda, H. (1997) Mineralogical records of early planetary processes on the HED parent body with reference to Vesta. Meteoritics & Planetary Science 32, 841853.CrossRefGoogle Scholar
Takeda, H., & Mori, H. (1985) The diogenite–eucrite links and the crystallization history of a crust of their parent body. Journal of Geophysical Research 90(Suppl.), C636C648.Google Scholar
Taylor, L. A., Pieters, C. M., Keller, L. P., Morris, R. V., & McKay, D. S. (2001) Lunar mare soils: Space weathering and the major effects of surface-correlated nanophase Fe. Journal of Geophysical Research 106, 2798528000.Google Scholar
Thangjam, G., Nathues, A., Mengel, K., et al. (2014) Olivine-rich exposures at Bellicia and Arruntia craters on (4) Vesta from Dawn FC. Meteoritics & Planetary Science 49, 18311850.Google Scholar
Thangjam, G., Nathues, A., Mengel, K., et al. (2016) Three-dimensional spectral analysis of compositional heterogeneity at Arruntia crater on (4) Vesta using Dawn FC. Icarus 267, 344363.Google Scholar
Tosi, F., Frigeri, A., Combe, J.-P., et al. (2015) Mineralogical analysis of the Oppia quadrangle of asteroid (4) Vesta: Evidence for occurrence of moderate-reflectance hydrated minerals. Icarus 259, 129149.Google Scholar
Turrini, D., Combe, J.-P., McCord, T. B., et al. (2014) The contamination of the surface of Vesta by impacts and the delivery of the dark material. Icarus 240, 86102.Google Scholar
Turrini, D., Svetsov, V., Consolmagno, G., Sirono, S., & Pirani, S. (2016) Olivine on Vesta as exogenous contaminants brought by impacts: Constraints from modeling Vesta’s collisional history and from impact simulations. Icarus 280, 328339.Google Scholar
Veeder, G. J., Jonson, T. V., & Matson, D L. (1975) Narrowband spectrophotometry of Vesta (abstract). Bulletin of the American Astronomical Society 7, 377.Google Scholar
Vernazza, P., Brunetto, R., Strazzulla, G., et al. (2006) Asteroid colors: A novel tool for magnetic field detection? The case of Vesta. Astronomy & Astrophysics 451, 4346.Google Scholar
Veverka, J., Helfenstein, P., Lee, P., et al. (1996) Ida and Dactyl: Spectral and color variations. Icarus 120, 6676.Google Scholar
Warren, P. H. (1997) MgO-FeO mass balance constraints and a more detailed model for the relationship between eucrites and diogenites. Meteoritics & Planetary Science 32, 945963.Google Scholar
Wasson, J. T. (2013) Vesta and extensively melted asteroid: Why HED meteorites are probably not from Vesta. Earth and Planetary Science Letters 381, 138146.Google Scholar
Yamashita, N., Prettyman, T. H., Mittlefehldt, D. W., et al. (2013) Distribution of iron on Vesta. Meteoritics & Planetary Science 48, 22372251.Google Scholar
Zambon, F., De Sanctis, M., Schröder, S., et al. (2014) Spectral analysis of the bright materials on the asteroid Vesta. Icarus 240, 7385.Google Scholar
Zambon, F., Tosi, F., Carli, C., et al. (2016) Lithologic variation within bright material on Vesta revealed by linear spectral unmixing. Icarus 272, 1631.Google Scholar
Zolensky, M. E., & Barrett, R. (1992) Compositional variations of olivines and pyroxenes in chondritic interplanetary dust particles. Meteoritics 27, 312.Google Scholar
Zolensky, M. E., Weisberg, M. K., Buchanan, P. C., & Mittlefehldt, D. W. (1996) Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon, Meteoritics & Planetary Science 31, 518537.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×