We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Some people think wisdom is a stable and invariable individual disposition. Others view wisdom as deeply embedded in culture, experiences, and situations, and treat these features as mutually making up wisdom. What are the implications of each view for measurement, training, and the fundamental nature of wisdom itself? This chapter reviews evidence concerning the dispositional versus situational approaches to study wisdom. Even though main features of wisdom show some stability, there is also a profound and systematic variability in response to situational demands. By conceptualizing dispositions as a distribution of situation-specific responses, one can integrate dispositional and situational approaches to wisdom. Building on these insights, it is recommended to pay attention to contextual factors in measurement. Insight about contextual factors can also shed light on how to develop interventions for training wisdom.
Many emotional experiences such as anxiety and depression are influenced by negative affect (NA). NA has both trait and state features, which play different roles in physiological and mental health. Attending to NA common to various emotional experiences and their trait-state features might help deepen the understanding of the shared foundation of related emotional disorders.
Methods
The principal component of five measures was calculated to indicate individuals' NA level. Applying the connectivity-based correlation analysis, we first identified resting-state functional connectives (FCs) relating to NA in sample 1 (n = 367), which were validated through an independent sample (n = 232; sample 2). Next, based on the variability of FCs across large timescale, we further divided the NA-related FCs into high- and low-variability groups. Finally, FCs in different variability groups were separately applied to predict individuals' neuroticism level (which is assumed to be the core trait-related factor underlying NA), and the change of NA level (which represents the state-related fluctuation of NA).
Results
The low-variability FCs were primarily within the default mode network (DMN) and between the DMN and dorsal attention network/sensory system and significantly predicted trait rather than state NA. The high-variability FCs were primarily between the DMN and ventral attention network, the fronto-parietal network and DMN/sensory system, and significantly predicted the change of NA level.
Conclusions
The trait and state NA can be separately predicted by stable and variable spontaneous FCs with different attentional processes and emotion regulatory mechanisms, which could deepen our understanding of NA.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.