We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper analyzes the training process of generative adversarial networks (GANs) via stochastic differential equations (SDEs). It first establishes SDE approximations for the training of GANs under stochastic gradient algorithms, with precise error bound analysis. It then describes the long-run behavior of GAN training via the invariant measures of its SDE approximations under proper conditions. This work builds a theoretical foundation for GAN training and provides analytical tools to study its evolution and stability.
We first introduce the concept of weak random periodic solutions of random dynamical systems. Then, we discuss the existence of such periodic solutions. Further, we introduce the definition of weak random periodic measures and study their relationship with weak random periodic solutions. In particular, we establish the existence of invariant measures of random dynamical systems by virtue of their weak random periodic solutions. We use concrete examples to illustrate the weak random periodic phenomena of dynamical systems induced by random and stochastic differential equations.
The necessary stochastic integral theory for processes of bounded variation is developed. The concept of predictability is discussed in detail, its interpretation as well as its relation to martingale theory. The Itô formula is derived and we prove the Watanabe characterization of the Poisson process.
We provide the first generic exact simulation algorithm for multivariate diffusions. Current exact sampling algorithms for diffusions require the existence of a transformation which can be used to reduce the sampling problem to the case of a constant diffusion matrix and a drift which is the gradient of some function. Such a transformation, called the Lamperti transformation, can be applied in general only in one dimension. So, completely different ideas are required for the exact sampling of generic multivariate diffusions. The development of these ideas is the main contribution of this paper. Our strategy combines techniques borrowed from the theory of rough paths, on the one hand, and multilevel Monte Carlo on the other.
In this paper, enlightened by the asymptotic expansion methodology developed by Li [(2013). Maximum-likelihood estimation for diffusion processes via closed-form density expansions. Annals of Statistics 41: 1350–1380] and Li and Chen [(2016). Estimating jump-diffusions using closed-form likelihood expansions. Journal of Econometrics 195(1): 51–70], we propose a Taylor-type approximation for the transition densities of the stochastic differential equations (SDEs) driven by the gamma processes, a special type of Lévy processes. After representing the transition density as a conditional expectation of Dirac delta function acting on the solution of the related SDE, the key technical method for calculating the expectation of multiple stochastic integrals conditional on the gamma process is presented. To numerically test the efficiency of our method, we examine the pure jump Ornstein–Uhlenbeck model and its extensions to two jump-diffusion models. For each model, the maximum relative error between our approximated transition density and the benchmark density obtained by the inverse Fourier transform of the characteristic function is sufficiently small, which shows the efficiency of our approximated method.
It is well understood that a supercritical continuous-state branching process (CSBP) is equal in law to a discrete continuous-time Galton–Watson process (the skeleton of prolific individuals) whose edges are dressed in a Poissonian way with immigration which initiates subcritical CSBPs (non-prolific mass). Equally well understood in the setting of CSBPs and superprocesses is the notion of a spine or immortal particle dressed in a Poissonian way with immigration which initiates copies of the original CSBP, which emerges when conditioning the process to survive eternally. In this article we revisit these notions for CSBPs and put them in a common framework using the well-established language of (coupled) stochastic differential equations (SDEs). In this way we are able to deal simultaneously with all types of CSBPs (supercritical, critical, and subcritical) as well as understanding how the skeletal representation becomes, in the sense of weak convergence, a spinal decomposition when conditioning on survival. We have two principal motivations. The first is to prepare the way to expand the SDE approach to the spatial setting of superprocesses, where recent results have increasingly sought the use of skeletal decompositions to transfer results from the branching particle setting to the setting of measure valued processes. The second is to provide a pathwise decomposition of CSBPs in the spirit of genealogical coding of CSBPs via Lévy excursions, albeit precisely where the aforesaid coding fails to work because the underlying CSBP is supercritical.
We study the construction of symplectic Runge-Kutta methods for stochastic Hamiltonian systems (SHS). Three types of systems, SHS with multiplicative noise, special separable Hamiltonians and multiple additive noise, respectively, are considered in this paper. Stochastic Runge-Kutta (SRK) methods for these systems are investigated, and the corresponding conditions for SRK methods to preserve the symplectic property are given. Based on the weak/strong order and symplectic conditions, some effective schemes are derived. In particular, using the algebraic computation, we obtained two classes of high weak order symplectic Runge-Kutta methods for SHS with a single multiplicative noise, and two classes of high strong order symplectic Runge-Kutta methods for SHS with multiple multiplicative and additive noise, respectively. The numerical case studies confirm that the symplectic methods are efficient computational tools for long-term simulations.
In this paper, we investigate the mean-square convergence of the split-step θ-scheme for nonlinear stochastic differential equations with jumps. Under some standard assumptions, we rigorously prove that the strong rate of convergence of the split-step θ-scheme in strong sense is one half. Some numerical experiments are carried out to assert our theoretical result.
We review, implement, and compare numerical integration schemes for spatially bounded
diffusions stopped at the boundary which possess a convergence rate of the
discretization error with respect to the timestep h higher than
. We address specific implementation issues of the most
general-purpose of such schemes. They have been coded into a single Matlab program
and compared, according to their accuracy and computational cost, on a wide range of
problems in up to ℝ48. The paper is self-contained and the code will be
made freely downloadable.
We describe an Euler scheme to approximate solutions of Lévy driven stochastic differential equations (SDEs) where the grid points are given by the arrival times of a Poisson process and thus are random. This result extends the previous work of Ferreiro-Castilla et al. (2014). We provide a complete numerical analysis of the algorithm to approximate the terminal value of the SDE and prove that the mean-square error converges with rate O(n-1/2). The only requirement of the methodology is to have exact samples from the resolvent of the Lévy process driving the SDE. Classical examples, such as stable processes, subclasses of spectrally one-sided Lévy processes, and new families, such as meromorphic Lévy processes (Kuznetsov et al. (2012), are examples for which our algorithm provides an interesting alternative to existing methods, due to its straightforward implementation and its robustness with respect to the jump structure of the driving Lévy process.
The multi-level Monte Carlo method proposed by Giles (2008) approximates the expectation of some functionals applied to a stochastic process with optimal order of convergence for the mean-square error. In this paper a modified multi-level Monte Carlo estimator is proposed with significantly reduced computational costs. As the main result, it is proved that the modified estimator reduces the computational costs asymptotically by a factor (p / α)2 if weak approximation methods of orders α and p are applied in the case of computational costs growing with the same order as the variances decay.
A numerical comparison of finite difference (FD) and finite element (FE) methods for a stochastic ordinary differential equation is made. The stochastic ordinary differential equation is turned into a set of ordinary differential equations by applying polynomial chaos, and the FD and FE methods are then implemented. The resulting numerical solutions are all non-negative. When orthogonal polynomials are used for either continuous or discrete processes, numerical experiments also show that the FE method is more accurate and efficient than the FD method.
In this paper we propose the asymptotic error distributions of the Euler scheme for a stochastic differential equation driven by Itô semimartingales. Jacod (2004) studied this problem for stochastic differential equations driven by pure jump Lévy processes and obtained quite sharp results. We extend his results to a more general pure jump Itô semimartingale.
The large deviation principle in the small noise limit is derived for solutions of possibly degenerate Itô stochastic differential equations with predictable coefficients, which may also depend on the large deviation parameter. The result is established under mild assumptions using the Dupuis-Ellis weak convergence approach. Applications to certain systems with memory and to positive diffusions with square-root-like dispersion coefficient are included.
Although many studies have addressed the topic of stability versus change in depressive symptoms, few have further decomposed the change to continuous accumulation versus non-systematic state fluctuations or measurement errors. This further step requires a longitudinal follow-up and an appropriate stochastic model; it would, for example, evaluate the hypothesis that women accumulate more susceptibility events than men.
Method
A linear stochastic differential equation model was estimated for a 16-year longitudinal course of depressive symptoms in the Young Finns community sample of 3596 participants (1832 women, 1764 men). This model enabled us to decompose the variance in depression symptoms into a stable trait, cumulative effects and state/error fluctuations.
Results
Women showed higher mean levels and higher variance of depressive symptoms than men. In men, the stable trait accounted for the majority [61%, 90% confidence interval (CI) 48.9–69.2] of the total variance, followed by cumulative effects (23%, 90% CI 9.9–41.7) and state/error fluctuations (16%, 90% CI 5.6–23.2). In women, the cumulative sources were more important than among men and accounted for 44% (90% CI 23.6–58.9) of the variance, followed by stable individual differences (32%, 90% CI 18.5–54.2) and state fluctuations (24%, 90% CI 19.1–27.3).
Conclusions
The results are consistent with previous observations that women suffer more depression than men, and have more variance in depressive symptoms. We also found that continuously accumulating effects are a significant contributor to between-individual differences in depression, especially for women. Although the accumulating effects are often confounded with non-systematic state fluctuations, the latter are unlikely to exceed 27% of the total variance of depressive symptoms.
In this paper, using direct and inverse images for fractional stochastic tangent sets, weestablish the deterministic necessary and sufficient conditions which control that thesolution of a given stochastic differential equation driven by the fractional Brownianmotion evolves in some particular sets K. As a consequence, a comparisontheorem is obtained.
For a given bivariate Lévy process (Ut, Lt)t≥0, distributional properties of the stationary solutions of the stochastic differential equation dVt = Vt-dUt + dLt are analysed. In particular, the expectation and autocorrelation function are obtained in terms of the process (U, L) and in several cases of interest the tail behavior is described. In the case where U has jumps of size −1, necessary and sufficient conditions for the law of the solutions to be (absolutely) continuous are given.
We consider a stochastic differential equation (SDE) with piecewise linear drift driven by a spectrally one-sided Lévy process. We show that this SDE has some connections with queueing and storage models, and we use this observation to obtain the invariant distribution.
Jakeman's random walk model with step number fluctuations describes the coherent amplitude scattered from a rough medium in terms of the summation of individual scatterers' contributions. If the scattering population conforms to a birth-death immigration model, the resulting amplitude is K-distributed. In this context, we derive a class of diffusion processes as an extension of the ordinary birth-death immigration model. We show how this class encompasses four different cross-section models commonly studied in the literature. We conclude by discussing the advantages of this unified description.