We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a finite group G, we denote by
$L(G)$
the subgroup lattice of G and by
${\cal CD}(G)$
the Chermak–Delgado lattice of G. In this note, we determine the finite groups G such that
$|{\cal CD}(G)|=|L(G)|-k$
, for
$k=1,2$
.
The Chermak–Delgado lattice of a finite group G is a self-dual sublattice of the subgroup lattice of G. In this paper, we prove that, for any finite abelian group A, there exists a finite group G such that the Chermak–Delgado lattice of G is a subgroup lattice of A.
One of the most interesting problems in the field Subgroup Lattices of Groups is to find lattice-theoretic characterizations of interesting classes of groups. After explaining this problem by looking at the classical characterizations of cyclic and of finite soluble groups, we first present lattice-theoretic characterizations of some classes of infinite soluble groups. Then for a finite group G we try to determine in its subgroup lattice L(G) the Fitting length of G and properties defined by arithmetical conditions. For this we use some new ideas to determine minimal normal subgroups and the orders of minimal subgroups in L(G).
Various lattices of subgroups of a finite transitive permutation group G can be used to define a set of ‘basic’ permutation groups associated with G that are analogues of composition factors for abstract finite groups. In particular G can be embedded in an iterated wreath product of a chain of its associated basic permutation groups. The basic permutation groups corresponding to the lattice L of all subgroups of G containing a given point stabiliser are a set of primitive permutation groups. We introduce two new subgroup lattices contained in L, called the seminormal subgroup lattice and the subnormal subgroup lattice. For these lattices the basic permutation groups are quasiprimitive and innately transitive groups, respectively.
In this note we characterize the abelian groups G which have two different proper subgroups N and M such that the subgroup lattice L(G)=[0, M]∪ [N, G] is the union of these intervals.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.