Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T13:01:21.225Z Has data issue: false hasContentIssue false

Groups whose Chermak–Delgado lattice is a subgroup lattice of an abelian group

Published online by Cambridge University Press:  17 June 2022

Lijian An*
Affiliation:
Department of Mathematics, Shanxi Normal University, Linfen, Shanxi 041004, P. R. China
*
Rights & Permissions [Opens in a new window]

Abstract

The Chermak–Delgado lattice of a finite group G is a self-dual sublattice of the subgroup lattice of G. In this paper, we prove that, for any finite abelian group A, there exists a finite group G such that the Chermak–Delgado lattice of G is a subgroup lattice of A.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

1 Introduction

Suppose that G is a finite group, and H is a subgroup of G. The Chermak–Delgado measure of H (in G) is denoted by $m_G(H)$ , and defined as $m_G(H)=|H|\cdot |C_G(H)|.$ The maximal Chermak–Delgado measure of G is denoted by $m^*(G)$ , and defined as

$$ \begin{align*}m^*(G)=\max\{ m_G(H)\mid H\le G\}.\end{align*} $$

Let

$$ \begin{align*}\mathcal{CD}(G)=\{ H\mid m_G(H)=m^*(G)\}.\end{align*} $$

Then the set $\mathcal {CD}(G)$ forms a sublattice of $\mathcal {L}(G)$ (the subgroup lattice of G), which is called the Chermak–Delgado lattice of G. It was first introduced by Chermak and Delgado [Reference Chermak and Delgado9], and revisited by Isaacs [Reference Isaacs12]. In the last years, there has been a growing interest in understanding this lattice (see, e.g., [Reference An1Reference Glauberman11, Reference McCulloch13Reference Morresi Zuccari, Russo and Scoppola17, Reference Tǎrnǎuceanu19Reference Wilcox22]).

A Chermak–Delgado lattice is always self-dual. So the question arises: Which types of self-dual lattices can be Chermak–Delgado lattices of finite groups? In [Reference Brewster, Hauck and Wilcox5], it is proved that, for any integer n, a chain of length n can be a Chermak–Delgado lattice of a finite p-group.

A quasi-antichain is a lattice consisting of a maximum, a minimum, and the atoms of the lattice. The width of a quasi-antichain is the number of atoms. For a positive integer $w\ge 3$ , a quasi-antichain of width w is denoted by $\mathcal {M}_{w}$ . In [Reference Brewster, Hauck and Wilcox6], it was proved that $\mathcal {M}_{w}$ can be a Chermak–Delgado lattice of a finite group if and only if $w=1+p^a$ for some positive integer a and some prime p.

An m-diamond is a lattice with subgroups in the configuration of an m-dimensional cube. A mixed n-string is a lattice with n components, adjoined end to end, so that the maximum of one component is identified with the minimum of the other component. The following theorem gives more self-dual lattices which can be Chermak–Delgado lattices of finite groups.

Theorem 1.1 [Reference An, Brennan, Qu and Wilcox4]

If $\mathcal {L}$ is a Chermak–Delgado lattice of a finite p-group G such that both $G/Z(G)$ and $G'$ are elementary abelian, then so are $\mathcal {L}^+$ and $\mathcal {L}^{++}$ , where $\mathcal {L}^+$ is a mixed $3$ -string with center component isomorphic to $\mathcal {L}$ and the remaining components being m-diamonds, and $\mathcal {L}^{++}$ is a mixed $3$ -string with center component isomorphic to $\mathcal {L}$ and the remaining components being lattice isomorphic to $\mathcal {M}_{p+1}$ .

By [Reference Schmidt18, Theorem 8.1.4], $\mathcal {L}(A)$ is always self-dual for any finite abelian group A. If A is a cyclic p-group, then $\mathcal {L}(A)$ is chain, and hence can be a Chermak–Delgado lattice of a finite p-group. In [Reference An2], it is proved that, if A is an elementary abelian p-group, then $\mathcal {L}(A)$ can be a Chermak–Delgado lattice of a finite p-group. In this paper, we prove that, for any finite abelian group A, $\mathcal {L}(A)$ can be a Chermak–Delgado lattice of a finite group. The main results are the following theorems.

Theorem 1.2 For any finite abelian p-group A, there exists a finite p-group G such that $\mathcal {CD}(G)$ is isomorphic to $\mathcal {L}(A)$ .

Theorem 1.3 For any finite abelian group A, there exists a finite group G such that $\mathcal {CD}(G)$ is isomorphic to $\mathcal {L}(A)$ .

2 Preliminary

We gather next some basic properties of the Chermak–Delgado lattice, which will be used often throughout the paper without further reference.

Theorem 2.1 [Reference Chermak and Delgado9]

Suppose that G is a finite group and $H,K\in \mathcal {CD}(G)$ .

  1. (1) $\langle H,K\rangle =HK$ . Hence, a Chermak–Delgado lattice is modular.

  2. (2) $C_G(H\cap K)=C_G(H)C_G(K)$ .

  3. (3) $C_G(H)\in \mathcal {CD}(G)$ and $C_G(C_G(H))=H$ . Hence, a Chermak–Delgado lattice is self-dual.

  4. (4) Let M be the maximal member of $\mathcal {CD}(G)$ . Then M is characteristic in G and $\mathcal {CD}(M)=\mathcal {CD}(G)$ .

  5. (5) The minimal member of $\mathcal {CD}(G)$ is characteristic, abelian, and contains $Z(G)$ .

We also need the following lemmas.

Theorem 2.2 [Reference Brewster and Wilcox7, Theorem 2.9]

For any finite groups G and H, $\mathcal {CD}(G\times H)=\mathcal {CD}(G)\times \mathcal {CD}(H).$

Lemma 2.3 [Reference An2, Lemma 3.3]

Suppose that G is a finite group and $H\le G $ such that $G=HC_G(H)$ . If $H\in \mathcal {CD}(H)$ , then H is contained in the unique maximal member of $\mathcal {CD}(G)$ .

Lemma 2.4 [Reference Tǎrnǎuceanu20, Lemma 5]

Let G be a finite p-group. Then $\mathcal {CD}(G)=[G/Z(G)]$ if and only if the interval $[G/Z(G)]$ of $\mathcal {L}(G)$ is modular and $G'$ is cyclic.

In this section, we prove that, for any finite abelian group A, $\mathcal {L}(A\times A)$ can be a Chermak–Delgado lattice of a finite group. Although this result can be deduced from our main theorem, the proof is independent and short.

Lemma 2.5 Let A be a finite abelian p-group. Then there exists a finite p-group G such that $\mathcal {CD}(G)$ is isomorphic to $\mathcal {L}(A\times A)$ .

Proof Assume that the type of A is $(p^{e_1},p^{e_2},\dots ,p^{e_m})$ , where $e_1\ge e_2\ge \dots \ge e_m$ . Let G be the group generated by $2m$ elements $x_1,\dots ,x_m$ , $y_1,\dots ,y_m$ subject to the defining relations:

$$ \begin{gather*} [x_i,x_j]=[y_i,y_j]=[x_i,y_j]=1 \text{ if }i\ne j, \\[3pt] x_i^{p^{e_i}}=y_i^{p^{e_i}}=z^{p^{e_1}}=1, [x_i,y_i]=z^{p^{e_1-e_i}}, [z,x_i]=[z,y_i]=1 \text{ for }1\le i\le m. \end{gather*} $$

Let $P_i=\langle x_i,y_i,z\rangle $ . Then $Z(P_i)=\langle z\rangle $ . Thus, G is also the central product of $P_i$ . It is easy to see that $G'=Z(G)=\langle z\rangle $ and $G/Z(G)\cong A\times A$ . By Lemma 2.4, $\mathcal {CD}(G)$ is just the interval $[G/Z(G)]$ . Hence, $\mathcal {CD}(G)\cong \mathcal {L}(G/Z(G))\cong \mathcal {L}(A\times A)$ .

Theorem 2.6 For any finite abelian group A, there exists a finite group G such that $\mathcal {CD}(G)$ is isomorphic to $\mathcal {L}(A\times A)$ .

Proof Let $A=A_1\times \cdots \times A_n$ , where $A_i$ is the Sylow $p_i$ -subgroup of A. By Lemma 2.5, there exist finite group $P_i$ such that $\mathcal {CD}(P_i)$ is isomorphic to $\mathcal {L}(A_i\times A_i)$ . Let $G=P_1\times \cdots \times P_n$ . By Theorem 2.2,

$$ \begin{align*} \mathcal{CD}(G) &= \mathcal{CD}(P_1)\times \cdots \times \mathcal{CD}(P_n) \\[3pt] &\cong \mathcal{L}(A_1\times A_1)\times \cdots \times \mathcal{L}(A_n\times A_n) \\[3pt] &= \mathcal{L}(A\times A).\\[-2.7pc] \end{align*} $$

3 The groups $G(p,e)$

For any prime p and an integer $e\ge 1$ , we use $G(p,e)$ to denote the finite p-group generated by three elements $x,y,w$ subject to the following defining relations:

  • $[x,y]=z_1$ , $[y,w]=z_2$ , $[w,x]=z_3$ ,

  • $x^{p^e}=y^{p^e}=w^{p^e}=z_1^{p^e}=z_2^{p^e}=z_3^{p^e}=1$ , and

  • $[z_i,x]=[z_i,y]=[z_i,w]=1$ for all $i=1,2,3$ .

In this section, we prove that the Chermak–Delgado lattice of $G(p,e)$ is isomorphic to a subgroup lattice of a cyclic group of order $p^e$ . This group will be used to construct an example in the proof of Theorem 1.2. Let $G=G(p,e)$ . Then it is easy to check the following results:

  • $d(G)=3$ , $\exp (G)=p^e$ , $Z(G)=G'=\langle z_1,z_2,z_3\rangle $ , and

  • $|Z(G)|=p^{3e}$ , $|G/Z(G)|=p^{3e}$ , $m_G(G)=m_G(Z(G))=p^{9e}$ .

Lemma 3.1 Assume that $G=G(p,e)$ and $Z(G)<H<G$ .

  1. (1) If $H/Z(G)$ is cyclic, then $m_G(H)<m_G(G)$ .

  2. (2) If $H/Z(G)$ is not cyclic, then $m_G(H)\le m_G(G)$ , where “ $=$ ” holds if and only if the type of $H/Z(G)$ is $(p^{e_1},p^{e_1},p^{e_1})$ for some $1\le e_1<e$ .

Proof (1) Let $H=\langle h, Z(G)\rangle $ and $H/Z(G)$ be of order $p^{e_1}$ . Then we may let

$$ \begin{align*}h=x^{k_1p^{e-e_1}}y^{k_2p^{e-e_1}}w^{k_3p^{e-e_1}},\end{align*} $$

where $p\nmid k_i$ for some i. Without loss of generality, we may assume that $p\nmid k_1$ . Replacing x with $x^{k_1}y^{k_2}w^{k_3}$ , we have $h=x^{p^{e-e_1}}$ . It is easy to check that $C_G(H)=\langle x, y^{p^{e_1}}, w^{p^{e_1}}\rangle Z(G)$ . Since $|C_G(H)/Z(G)|=p^{3e-2e_1}$ ,

$$ \begin{align*}|H/Z(G)|\cdot |C_G(H)/Z(G)|=p^{3e-e_1}<p^{3e}=|G/Z(G)|.\end{align*} $$

Hence, $m_G(H)=|H|\cdot |C_G(H)|<|G|\cdot |Z(G)|=m_G(G)$ .

(2) Let $H=\langle h_1,h_2, h_3\rangle Z(G)$ and $H/Z(G)$ be of type $(p^{e_1},p^{e_2},p^{e_3})$ , where $e_1\ge e_2\ge e_3\ge 0$ . Since $H/Z(G)$ is not cyclic, $e_2\ge 1$ . By a similar argument as (1), we may assume that $h_1=x^{p^{e-e_1}}$ . We may let

$$ \begin{align*}h_2=x^{k_1p^{e-e_2}}y^{k_2p^{e-e_2}}w^{k_3p^{e-e_2}},\end{align*} $$

where $p\nmid k_i$ for some $2\le i\le 3$ . Without loss of generality, we may assume that $p\nmid k_2$ . Replacing y with $x^{k_1}y^{k_2}w^{k_3}$ , we have $h_2=y^{p^{e-e_2}}$ . It is easy to check that

$$ \begin{align*}C_G(H)=C_G(h_1)\cap C_G(h_2)=\langle x^{p^{e_2}}, y^{p^{e_1}},w^{p^{e_1}}\rangle Z(G).\end{align*} $$

Since $|H/Z(G)|=p^{e_1+e_2+e_3}$ and $|C_G(H)/Z(G)|=p^{3e-e_2-2e_1}$ ,

$$ \begin{align*}|H/Z(G)|\cdot |C_G(H)/Z(G)|=p^{3e+e_3-e_1}\le p^{3e}=|G/Z(G)|,\end{align*} $$

where “ $=$ ” holds if and only if $e_3=e_1$ . Hence, $m_G(H)=|H|\cdot |C_G(H)|\le |G|\cdot |Z(G)|=m_G(G)$ , where “ $=$ ” holds if and only if $e_1=e_2=e_3$ .

Theorem 3.2 Let $G=G(p,e)$ . Then $G\in \mathcal {CD}(G)$ and $\mathcal {CD}(G)$ is a chain of length e. Moreover, $H\in \mathcal {CD}(G)$ if and only if $H=\langle x^{p^{e-e_1}},y^{p^{e-e_1}},w^{p^{e-e_1}}\rangle Z(G)$ for some $0\le e_1\le e$ .

Proof By Lemma 3.1, $m^*(G)=m_G(G)=p^{9e}$ , and $H\in \mathcal {CD}(G)$ if and only if the type of $H/Z(G)$ is $(p^{e_1},p^{e_1},p^{e_1})$ for some $0\le e_1\le e$ . Hence, all elements of $\mathcal {CD}(G)$ are $\langle x^{p^{e-e_1}},y^{p^{e-e_1}},w^{p^{e-e_1}}\rangle Z(G)$ where $0\le e_1\le e$ .

4 The proof of main results

For any prime p and an abelian p-group A with type $(p^{e_1},p^{e_2},\dots ,p^{e_m})$ , where $e_1\ge e_2\ge \cdots \ge e_m$ , we use $G_A$ to denote the finite p-group generated by $3m$ elements $x_1,\dots ,x_m$ , $y_1,\dots ,y_m$ , $w_1,\dots ,w_m$ subject to the following defining relations:

  • $x_i^{p^{e_i}}=y_i^{p^{e_i}}=w_i^{p^{e_i}}=z_1^{p^{e_1}}=z_2^{p^{e_1}}=z_3^{p^{e_1}}=1$ for $1\le i\le m$ ,

  • $[x_i,x_j]=[y_i,y_j]=[w_i,w_j]=[x_i,y_j]=[y_i,w_j]=[w_i,x_j]=1$ if $i\ne j$ ,

  • $[x_i,y_i]=z_1^{p^{e_1-e_i}}$ , $[y_i,w_i]=z_2^{p^{e_1-e_i}}$ , $[w_i,x_i]=z_3^{p^{e_1-e_i}}$ for $1\le i\le m$ , and

  • $[z_j,x_i]=[z_j,y_i]=[z_j,w_i]=1$ for $1\le i\le m$ and $j=1,2,3$ .

In this section, we require the following notation and straightforward results for a finite p-group $G=G_A$ .

  • $Z(G)=G'=\langle z_1,z_2,z_3\rangle $ is of order $p^{3e_1}$ .

  • Let $P_i=\langle x_i,y_i,w_i\rangle $ for $1\le i\le m$ . Then $P_i\cong G(p,e_i)$ , $|P_iZ(G)/Z(G)|=p^{3e_i}$ , and G is the central product $P_1*P_2*\cdots *P_m$ .

  • Let $X=\langle x_1,x_2,\dots , x_m\rangle $ , $Y=\langle y_1,y_2,\dots ,y_m\rangle $ , and $W=\langle w_1,w_2,\dots ,w_m\rangle $ . Then $X\cong Y\cong W\cong A$ .

  • Let $n=e_1+e_2+\cdots +e_m$ . Then $|A|=p^n$ , $|G/Z(G)|=p^{3n}$ , $|G|=p^{3n+3e_1}$ , and $m_{G}(G)=p^{3n+6e_1}$ .

  • Let $\alpha ,\beta ,\gamma $ be isomorphisms from A to $X,Y,W$ , respectively, such that $x_i^{\alpha ^{-1}}=y_i^{\beta ^{-1}}=w_i^{\gamma ^{-1}}$ for all $1\le i\le m$ .

  • For $a\in A$ , let $a^\varphi =\langle a^\alpha , a^\beta , a^\gamma \rangle Z(G)$ .

  • For $B\le A$ , let $B^\varphi =\langle B^\alpha ,B^\beta ,B^\gamma \rangle Z(G)=\prod _{b\in B}b^\varphi $ .

The proof of Theorem 1.2

Assume that the type of A is $(p^{e_1},p^{e_2},\dots ,p^{e_m})$ , where $e_1\ge e_2\ge \cdots \ge e_m$ . Let $G=G_A$ . We will prove $\mathcal {CD}(G)\cong \mathcal {L}(A)$ in six steps.

(1) $G\in \mathcal {CD}(G)$ and $m^*(G)=p^{3n+6e_1}$ .

By Theorem 3.2, $P_i\in \mathcal {CD}(P_i)$ . Since $G=P_iC_{G}(P_i)$ , by Lemma 2.3, $P_i$ is contained in the unique maximal member of $\mathcal {CD}(G)$ . Hence, G is the unique maximal member of $\mathcal {CD}(G)$ and $m^*(G)=m_{G}(G)=p^{3n+6e_1}$ .

(2) For any $a\in A$ , there exists a subgroup $C_a$ of A such that $C_X(a^\beta )=C_X(a^\gamma )=(C_a)^\alpha $ , $C_Y(a^\alpha )=C_Y(a^\gamma )=(C_a)^\beta $ , and $C_W(a^\alpha )=C_W(a^\beta )=(C_a)^\gamma $ .

Notice that for $x\in X$ , $[x,a^\beta ]=1$ if and only if $[x,a^\gamma ]=1$ . We have $C_X(a^\beta )=C_X(a^\gamma )$ . Let $C_a=(C_X(a^\beta ))^{\alpha ^{-1}}$ . Then $C_X(a^\beta )=C_X(a^\gamma )=(C_a)^\alpha $ . Notice that for $c\in A$ , $[c^\alpha ,a^\gamma ]=1$ if and only if $[c^\beta ,a^\gamma ]=1$ . We have

$$ \begin{align*}c\in C_a\Longleftrightarrow c^\alpha\in C_X(a^\gamma)\Longleftrightarrow c^\beta\in C_Y(a^\gamma).\end{align*} $$

It follows that $C_Y(a^\gamma )=(C_a)^\beta $ . By the symmetry, the conclusions hold.

(3) $C_G(a^\varphi )=(C_a)^\varphi $ and $a^\varphi \in \mathcal {CD}(G)$ .

Suppose that a is of order $p^t$ . Then $|a^\varphi /Z(G)|=p^{3t}$ . Since $[a^\alpha ,G]\le \langle z_1^{p^{e_1-t}},z_3^{p^{e_1-t}}\rangle $ , the length of the conjugacy class of $a^\alpha $ does not exceed $p^{2t}$ . Hence, $|C_{G}(a^\alpha )|\ge p^{3n+3e_1-2t}$ and $|C_{G}(a^\alpha )/Z(G)|\ge p^{3n-2t}$ . Notice that

$$ \begin{align*}C_{G}(a^\alpha)/Z(G)=XZ(G)/Z(G)\times C_Y(a^\alpha)Z(G)/Z(G)\times C_W(a^\alpha)Z(G)/Z(G),\end{align*} $$

$|XZ(G)/Z(G)|=|X|=p^n$ , and by (2),

$$ \begin{align*}|C_a|=|C_Y(a^\alpha)|=|C_W(a^\alpha)|=|C_Y(a^\alpha)Z(G)/Z(G)|=|C_W(a^\alpha)Z(G)/Z(G)|.\end{align*} $$

We have $|C_a|\ge p^{n-t}$ . Hence, $|(C_a)^\varphi /Z(G)|\ge p^{3n-3t}$ . By (2), $(C_a)^\varphi \le C_G(a^\varphi )$ . Hence,

$$ \begin{align*}|a^\varphi/Z(G)|\cdot |C_{G}(a^\varphi)/Z(G)|\ge |a^\varphi/Z(G)|\cdot |(C_a)^\varphi/Z(G)|\ge p^{3n}=|G/Z(G)|.\end{align*} $$

It follows that

$$ \begin{align*}m_{G}(a^\varphi)=|a^\varphi|\cdot |C_{G}(a^\varphi)|\ge |G|\cdot |Z(G)|=m^*(G).\end{align*} $$

Thus, “ $=$ ” holds, $C_G(a^\varphi )=(C_a)^\varphi $ , and $a^\varphi \in \mathcal {CD}(G)$ .

(4) For any $B\le A$ , $B^\varphi \in \mathcal {CD}(G)$ and there exists a subgroup $C_B$ of A such that $C_G(B^\varphi )=(C_B)^\varphi $ . Moreover, $|B|\cdot |C_B|=p^n$ .

Let $C_B=\bigcap _{b\in B} C_b$ . Since $B^\varphi =\prod _{b\in B}b^\varphi $ , $B^\varphi \in \mathcal {CD}(G)$ and

$$ \begin{align*}C_G(B^\varphi)=\bigcap_{b\in B}C_G(b^\varphi)=\bigcap_{b\in B}(C_b)^\varphi=(C_B)^\varphi.\end{align*} $$

Since $|B^\varphi /Z(G)|=|B|^3$ and $|(C_B)^\varphi /Z(G)|=|C_B|^3$ , we have

$$ \begin{align*}|B|^3\cdot |C_B|^3=|B^\varphi/Z(G)|\cdot |(C_B)^\varphi/Z(G)|=|G/Z(G)|=p^{3n}.\end{align*} $$

Hence, $|B|\cdot |C_B|=p^n$ .

(5) If $K\in \mathcal {CD}(G)$ , then there exists a subgroup B of A such that $K=B^\varphi $ .

Let $H=C_G(K)$ . Then $H\in \mathcal {CD}(G)$ and $K=C_G(H)$ . Let

$$ \begin{align*}B_1=\{ a\in A\mid \mbox{there exist}\ y\in Y, w\in W, \ \mbox{and}\ z\in Z(G)\ \mbox{such that}\ a^\alpha ywz\in H \},\end{align*} $$
$$ \begin{align*}B_2=\{ a\in A\mid \mbox{there exist}\ x\in X, w\in W, \ \mbox{and}\ z\in Z(G)\ \mbox{such that}\ xa^\beta wz\in H \},\end{align*} $$
$$ \begin{align*}B_3=\{ a\in A\mid \mbox{there exist}\ x\in X, y\in Y, \ \mbox{and}\ z\in Z(G)\ \mbox{such that}\ xya^\gamma z\in H \}.\end{align*} $$

Then $B_1$ , $B_2$ , and $B_3$ are subgroups of A and $|H/Z(G)|\le |B_1|\cdot |B_2|\cdot |B_3|$ . By (2),

$$ \begin{align*} C_X(H)\le C_X(B_2^\beta)=(C_{B_2})^\alpha. \end{align*} $$

Hence, $|C_X(H)|\le |C_{B_2}|$ . Similarly, $|C_Y(H)|\le |C_{B_3}|$ and $|C_W(H)|\le |C_{B_1}|$ . It follows that

$$ \begin{align*}|H/Z(G)|\cdot |K/Z(G)|\le |B_1|\cdot |B_2|\cdot |B_3|\cdot |C_{B_2}|\cdot |C_{B_3}|\cdot |C_{B_1}|=p^{3n}=|G/Z(G)|.\end{align*} $$

Since $H\in \mathcal {CD}(G)$ , “ $=$ ” holds. Hence,

$$ \begin{align*}K=C_G(H)=\langle (C_{B_2})^\alpha, (C_{B_3})^\beta, (C_{B_1})^\gamma\rangle Z(G)\end{align*} $$

and

$$ \begin{align*} C_X(H)=(C_{B_2})^\alpha, C_Y(H)=(C_{B_3})^\beta, \text{ and }C_W(H)=(C_{B_1})^\gamma. \end{align*} $$

By the symmetry, we also have

$$ \begin{align*} C_X(H)=(C_{B_3})^\alpha, C_Y(H)=(C_{B_1})^\beta, \text{ and } C_W(H)=(C_{B_2})^\gamma. \end{align*} $$

It follows that $C_{B_1}=C_{B_2}=C_{B_3}$ . Let $B=C_{B_1}$ . Then $K=C_G(H)=B^\varphi $ .

(6) $\mathcal {CD}(G)$ is isomorphic to $\mathcal {L}(A)$ .

It is a direct result of (4) and (5).

The proof of Theorem 1.3

Let $A=A_1\times \cdots \times A_n$ , where $A_i$ is the Sylow $p_i$ -subgroup of A. By Theorem 1.2, there exist finite groups $P_i$ such that $\mathcal {CD}(P_i)$ is isomorphic to $\mathcal {L}(A_i)$ . Let $G=P_1\times \cdots \times P_n$ . By Theorem 2.2,

$$ \begin{align*}\mathcal{CD}(G)=\mathcal{CD}(P_1)\times \cdots \times \mathcal{CD}(P_n)\cong \mathcal{L}(A_1)\times \cdots \times \mathcal{L}(A_n) =\mathcal{L}(A).\\[-33pt] \end{align*} $$

Acknowledgment

I cordially thank the referee for detailed reading and helpful comments, which helped me to improve the whole paper considerably.

Footnotes

This work was supported by NSFC (Grant No. 11971280).

References

An, L., Groups whose Chermak–Delgado lattice is a quasi-antichain . J. Group Theory 22(2019), no. 3, 529544.CrossRefGoogle Scholar
An, L., Groups whose Chermak–Delgado lattice is a subgroup lattice of an elementary abelian p-group . Comm. Algebra 50(2022), no.7, 28462853.CrossRefGoogle Scholar
An, L., Twisted centrally large subgroups of finite groups . J. Algebra 604(2022), 87106.CrossRefGoogle Scholar
An, L., Brennan, J., Qu, H., and Wilcox, E., Chermak–Delgado lattice extension theorems . Comm. Algebra 43(2015), no. 5, 22012213.CrossRefGoogle Scholar
Brewster, B., Hauck, P., and Wilcox, E., Groups whose Chermak–Delgado lattice is a chain . J. Group Theory 17(2014), no. 2, 253265.CrossRefGoogle Scholar
Brewster, B., Hauck, P., and Wilcox, E., Quasi-antichain Chermak–Delgado lattices of finite groups . Arch. Math. 103(2014), no. 4, 301311.CrossRefGoogle Scholar
Brewster, B. and Wilcox, E., Some groups with computable Chermak–Delgado lattices . Bull. Aust. Math. Soc. 86(2012), no. 1, 2940.CrossRefGoogle Scholar
Brush, E., Dietz, J., Johnson-Tesch, K., and Power, B., On the Chermak–Delgado lattices of split metacyclic p-groups . Involve 9(2016), no. 5, 765782.CrossRefGoogle Scholar
Chermak, A. and Delgado, A., A measuring argument for finite groups . Proc. Amer. Math. Soc. 107(1989), no. 4, 907914.CrossRefGoogle Scholar
Cocke, W., Subnormality and the Chermak–Delgado lattice . J. Algebra Appl. 19(2020), no. 8, 2050141, 7 pp.CrossRefGoogle Scholar
Glauberman, G., Centrally large subgroups of finite p-groups . J. Algebra 300(2006), 480508.CrossRefGoogle Scholar
Isaacs, I. M., Finite group theory, American Mathematical Society, Providence, RI, 2008.Google Scholar
McCulloch, R., Chermak–Delgado simple groups . Comm. Algebra 45(2017), no. 3, 983991.CrossRefGoogle Scholar
McCulloch, R., Finite groups with a trivial Chermak–Delgado subgroup . J. Group Theory 21(2018), no. 3, 449461.CrossRefGoogle Scholar
McCulloch, R. and Tǎrnǎuceanu, M., Two classes of finite groups whose Chermak–Delgado lattice is a chain of length zero . Comm. Algebra 46(2018), no. 7, 30923096.CrossRefGoogle Scholar
McCulloch, R. and Tǎrnǎuceanu, M., On the Chermak–Delgado lattice of a finite group . Comm. Algebra 48(2020), no. 1, 3744.CrossRefGoogle Scholar
Morresi Zuccari, A., Russo, V., and Scoppola, C. M., The Chermak–Delgado measure in finite p-groups . J. Algebra 502(2018), 262276.CrossRefGoogle Scholar
Schmidt, R., Subgroup lattices of groups, Walter de Gruyter, Berlin, New York, 1994.CrossRefGoogle Scholar
Tǎrnǎuceanu, M., The Chermak–Delgado lattice of ZM-groups . Results Math. 72(2017), no. 4, 18491855.CrossRefGoogle Scholar
Tǎrnǎuceanu, M., A note on the Chermak–Delgado lattice of a finite group . Comm. Algebra. 46(2018), no. 1, 201204.CrossRefGoogle Scholar
Tǎrnǎuceanu, M., Finite groups with a certain number of values of the Chermak–Delgado measure . J. Algebra Appl. 19 (2020), no.5, 2050088, 7 pp.CrossRefGoogle Scholar
Wilcox, E., Exploring the Chermak–Delgado lattice . Math. Magazine 89(2016), no. 1, 3844.CrossRefGoogle Scholar