We consider a multivariate Lévy process where the first coordinate is a Lévy process with no negative jumps which is not a subordinator and the others are non-decreasing. We determine the Laplace–Stieltjes transform of the steady-state buffer content vector of an associated system of parallel queues. The special structure of this transform allows us to rewrite it as a product of joint Laplace–Stieltjes transforms. We are thus able to interpret the buffer content vector as a sum of independent random vectors.