Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T22:24:35.889Z Has data issue: false hasContentIssue false

Synchronized Lévy queues

Published online by Cambridge University Press:  23 November 2020

Offer Kella*
Affiliation:
The Hebrew University of Jerusalem
Onno Boxma*
Affiliation:
Eindhoven University of Technology
*
*Postal address: Department of Statistics and Data Science, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem 9190501, Israel. Email: offer.kella@gmail.com
**Postal address: EURANDOM and Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands. Email: o.j.boxma@tue.nl

Abstract

We consider a multivariate Lévy process where the first coordinate is a Lévy process with no negative jumps which is not a subordinator and the others are non-decreasing. We determine the Laplace–Stieltjes transform of the steady-state buffer content vector of an associated system of parallel queues. The special structure of this transform allows us to rewrite it as a product of joint Laplace–Stieltjes transforms. We are thus able to interpret the buffer content vector as a sum of independent random vectors.

Type
Research Papers
Copyright
© Applied Probability Trust 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities, 2nd edn. World Scientific, Hackensack, NJ.10.1142/7431CrossRefGoogle Scholar
Badila, E. S., Boxma, O. J., Resing, J. A. C. and Winands, E. M. M. (2014). Queues and risk models with simultaneous arrivals. Adv. Appl. Prob. 46, 812831.10.1239/aap/1409319561CrossRefGoogle Scholar
Boxma, O. J., and Zwart, A. P. (2018). Fluid flow models in performance analysis. Comput. Commun. 131, 2225.10.1016/j.comcom.2018.07.009CrossRefGoogle Scholar
Debiçki, K. and Mandjes, M. R. H. (2015). Queues and Lévy Fluctuation Theory. Springer, New York.10.1007/978-3-319-20693-6CrossRefGoogle Scholar
Debiçki, K., Dieker, A. B. and Rolski, T. (2007). Quasi-product forms for Lévy-driven fluid networks. Math. Operat. Res. 32, 629647.10.1287/moor.1070.0259CrossRefGoogle Scholar
Kella, O. (1993). Parallel and tandem fluid networks with dependent Lévy inputs. Ann. Appl. Prob. 3, 682695.10.1214/aoap/1177005358CrossRefGoogle Scholar
Kella, O. (1996). An exhaustive Lévy storage process with intermittent output. Stochastic Models 14, 979992.10.1080/15326349808807509CrossRefGoogle Scholar
Kella, O. (2006). Reflecting thoughts. Statist. Prob. Lett. 76, 18081811.10.1016/j.spl.2006.04.028CrossRefGoogle Scholar
Kella, O. and Whitt, W. (1992). A tandem fluid network with Lévy input. In Queueing and Related Models, eds U. N. Bhat and I. V. Basawa. Oxford University Press.Google Scholar
Kella, O. and Whitt, W. (1996). Stability and structural properties of stochastic fluid networks. J. Appl. Prob. 33, 11691180.10.2307/3214994CrossRefGoogle Scholar
Kella, O. and Whitt, W. (1999). Linear stochastic fluid networks. J. Appl. Prob. 36, 244260.10.1239/jap/1032374245CrossRefGoogle Scholar
Kulkarni, V. G. (1997). Fluid models for single buffer systems. In Frontiers in Queueing, ed. J. H. Dshalalow, pp. 321338. CRC Press, Boca Raton.Google Scholar
Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin.Google Scholar