Dans ce papier nous prouvons que si une solution de KdV est suffisammentdécroissante à l'infini (c'est-à-dire comme e $^{-x^\alpha} $ où $\alpha >9/4$ ) et si la donnée de Cauchy est nulle pour x assez grandalors la solution est nulle. Ce résultat est la conséquence d'uneinégalité de Carleman adaptée à la décroissance de la solution à l'infini.