We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a difference analogue of the celebrated Tumura–Hayman–Clunie theorem. Let f be a transcendental entire function, let c be a nonzero constant and let n be a positive integer. If f and $\Delta _c^n f$ omit zero in the whole complex plane, then either $f(z)=\exp (h_1(z)+C_1 z)$, where $h_1$ is an entire function of period c and $\exp (C_1 c)\neq 1$, or $f(z)=\exp (h_2(z)+C_2 z)$, where $h_2$ is an entire function of period $2c$ and $C_2$ satisfies
We investigate Carlson–Griffiths’ equidistribution theory of meormorphic mappings from a complete Kähler manifold into a complex projective algebraic manifold. By using a technique of Brownian motions developed by Atsuji, we obtain a second main theorem in Nevanlinna theory provided that the source manifold is of nonpositive sectional curvature. In particular, a defect relation follows if some growth condition is imposed.
Complex linear differential equations with entire coefficients are studied in the situation where one of the coefficients is an exponential polynomial and dominates the growth of all the other coefficients. If such an equation has an exponential polynomial solution $f$, then the order of $f$ and of the dominant coefficient are equal, and the two functions possess a certain duality property. The results presented in this paper improve earlier results by some of the present authors, and the paper adjoins with two open problems.
For every
$m\in \mathbb {N}$
, we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in
$\mathbb {C}\setminus \{0\}$
under the
$m$
th order derivatives of the iterates of a polynomials
$f\in \mathbb {C}[z]$
of degree
$d>1$
towards the harmonic measure of the filled-in Julia set of f with pole at
$\infty $
. We also establish non-archimedean and arithmetic counterparts using the potential theory on the Berkovich projective line and the adelic equidistribution theory over a number field k for a sequence of effective divisors on
$\mathbb {P}^1(\overline {k})$
having small diagonals and small heights. We show a similar result on the equidistribution of the analytic sets where the derivative of each iterate of a Hénon-type polynomial automorphism of
$\mathbb {C}^2$
has a given eigenvalue.
Some negotiators (such as US President Donald Trump) think of negotiation as a zero-sum game, others (such as German Chancellor Angela Merkel) as an opportunity for win–win. In reality, most transactions include both aspects. Paradoxically, negotiations require the creation as well as the distribution of value. While they can be compatible, often they are not. I show the six tactics that are required for each, thus arriving at the tactical paradox of the task. It is graphically illustrated by the symbol of Yin & Yang.
Working from a half-plane result of Fletcher and Langley, we show that if f is an integer-valued function on some subset of the natural numbers of positive lower density and is meromorphic of sufficiently small exponential type in the plane, then f is a polynomial.
A result is presented giving conditions on a set of open discs in the complex plane that ensure that a transcendental meromorphic function with Nevanlinna deficient poles omits at most one finite value outside the set of discs. This improves a previous result of Langley, and goes some way towards closing a gap between Langley's result and a theorem of Toppila in which the omitted values considered may include ∞
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.