We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With the increasing availability of vehicle telemetry technology, there is great potential for Advanced Automatic Collision Notification (AACN) systems to improve trauma outcomes by detecting patients at-risk for severe injury and facilitating early transport to trauma centers.
Methods:
National Automotive Sampling System Crashworthiness Data System (NASS-CDS) data from 1999-2013 were used to construct a logistic regression model (injury severity prediction [ISP] model) predicting the probability that one or more occupants in planar, non-rollover motor vehicle collisions (MVCs) would have Injury Severity Score (ISS) 15+ injuries. Variables included principal direction of force (PDOF), change in velocity (Delta-V), multiple impacts, presence of any older occupant (≥55 years old), presence of any female occupant, presence of right-sided passenger, belt use, and vehicle type. The model was validated using medical records and 2008-2011 crash data from AACN-enabled Michigan (USA) vehicles identified from OnStar (OnStar Corporation; General Motors; Detroit, Michigan USA) records. To compare the ISP to previously established protocols, a literature search was performed to determine the sensitivity and specificity of first responder identification of ISS 15+ for MVC occupants.
Results:
The study population included 924 occupants in 836 crash events. The ISP model had a sensitivity of 72.7% (95% Confidence Interval [CI] 41%-91%) and specificity of 93% (95% CI 92%-95%) for identifying ISS 15+ occupants injured in planar MVCs. The current standard 2006 Field Triage Decision Scheme (FTDS) was 56%-66% sensitive and 75%-88% specific in identifying ISS 15+ patients.
Conclusions:
The ISP algorithm comparably is more sensitive and more specific than current field triage in identifying MVC patients at-risk for ISS 15+ injuries. This real-world field study shows telemetry data transmitted before dispatch of emergency medical systems can be helpful to quickly identify patients who require urgent transfer to trauma centers.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.