Published online by Cambridge University Press: 19 July 2019
With the increasing availability of vehicle telemetry technology, there is great potential for Advanced Automatic Collision Notification (AACN) systems to improve trauma outcomes by detecting patients at-risk for severe injury and facilitating early transport to trauma centers.
National Automotive Sampling System Crashworthiness Data System (NASS-CDS) data from 1999-2013 were used to construct a logistic regression model (injury severity prediction [ISP] model) predicting the probability that one or more occupants in planar, non-rollover motor vehicle collisions (MVCs) would have Injury Severity Score (ISS) 15+ injuries. Variables included principal direction of force (PDOF), change in velocity (Delta-V), multiple impacts, presence of any older occupant (≥55 years old), presence of any female occupant, presence of right-sided passenger, belt use, and vehicle type. The model was validated using medical records and 2008-2011 crash data from AACN-enabled Michigan (USA) vehicles identified from OnStar (OnStar Corporation; General Motors; Detroit, Michigan USA) records. To compare the ISP to previously established protocols, a literature search was performed to determine the sensitivity and specificity of first responder identification of ISS 15+ for MVC occupants.
The study population included 924 occupants in 836 crash events. The ISP model had a sensitivity of 72.7% (95% Confidence Interval [CI] 41%-91%) and specificity of 93% (95% CI 92%-95%) for identifying ISS 15+ occupants injured in planar MVCs. The current standard 2006 Field Triage Decision Scheme (FTDS) was 56%-66% sensitive and 75%-88% specific in identifying ISS 15+ patients.
The ISP algorithm comparably is more sensitive and more specific than current field triage in identifying MVC patients at-risk for ISS 15+ injuries. This real-world field study shows telemetry data transmitted before dispatch of emergency medical systems can be helpful to quickly identify patients who require urgent transfer to trauma centers.