We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to determine the ideal pacing site in children by comparing the postoperative ventricular synchrony in children with left bundle branch area pacing and those with right ventricular septal pacing.
Methods:
This retrospective study included children with complete atrioventricular block who underwent permanent pacemaker implantation from March 2019 to August 2021. Patients were grouped according to their ventricular pacing site, the left bundle branch area pacing group and the right ventricular septal pacing group. Two-dimensional speckle tracking echocardiography was used to evaluate the ventricular synchrony.
Results:
Forty-eight children (median age, 2.7 years; interquartile range, 1.7–4.6 years) were included. The paced QRS duration in the left bundle branch area pacing group was significantly narrower than that in the right ventricular septal pacing group (100.2 ± 9.3 versus 115.4 ± 15.1 ms, p = 0.001). The median follow-up duration was 1.5 years (interquartile range, 1–2 years). At the last follow-up, the average capture threshold of the ventricular electrode in the left bundle branch area pacing group was lower than that in the right ventricular septal pacing group (0.79 ± 0.18 versus 1.20 ± 0.56 V, p = 0.008). The left ventricular intraventricular synchrony parameters in the left bundle branch area pacing group were better than those in the right ventricular septal pacing group (e.g. standard deviation of the time to peak longitudinal strain, 37.4 ± 4.3 versus 46.6 ± 8.2 ms, p = 0.000). The average interventricular mechanical delay time in the left bundle branch area pacing group was significantly shorter than that in the right ventricular septal pacing group (36.4 ± 14.2 versus 52.5 ± 22.7 ms, p = 0.016).
Conclusion:
Compared with right ventricular septal pacing, left bundle branch area pacing in children produces a narrower QRS duration and better pacing and ventricular synchrony parameters postoperatively.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.