We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Specimens of the normal and congenitally abnormal heart have been long preserved, collected, and studied. It is increasingly difficult to add to such pathological collections. These museum pieces are often inaccessible for teaching purposes. Magnetic resonance imaging of old pathological specimens could produce high-resolution unalterable datasets that could be processed to create three-dimensional reconstructions using inexpensive systems that could be used by untrained individuals. To our knowledge, the concept of “Virtual Autopsy” has not been applied to cardiac specimens of museum collections.
Methods
To determine optimal sequences and assure specimen safety, five different pulse sequences designed to create three-dimensional datasets were tried on a uterus specimen suspended in a fluid-filled glass container, using a 1.5 Tesla scanner with an eight-channel phased-array coil. Having found the best sequences and established specimen integrity, we scanned six historical heart specimens in their original fluid-filled glass containers. The datasets were processed on a laptop with a DICOM viewer available as freeware.
Results
All specimens were successfully scanned. The best image quality was obtained by using a three-dimensional FSPGR and the BRAVO pulse sequences. High-resolution three-dimensional and multi-planar image processing was possible for all datasets. Detailed examination of the specimens could be easily performed.
Conclusion
Pathological specimens can successfully be scanned in minutes resulting in unalterable and portable high-resolution three-dimensional datasets that can be processed by using inexpensive readily available software. The final cardiac reconstructions can be widely shared for educational and scientific purposes and ensure a lasting access to pathological specimens.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.