We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate if fusion computed tomography–diffusion-weighted magnetic resonance imaging may have a role in the pre-operative assessment of congenital middle-ear cholesteatoma.
Methods
A retrospective chart review of surgically treated congenital middle-ear cholesteatoma patients over a 2-year timespan was conducted. Pre-operative staging was performed on computed tomography and fusion computed tomography–diffusion-weighted magnetic resonance imaging based on extension of the disease according to the ChOLE classification system and the Potsic classification system. Intra-operative staging was compared to imaging findings to evaluate accuracy of the two imaging modalities in predicting congenital middle-ear cholesteatoma extent.
Results
Computed tomography was able to correctly predict congenital middle-ear cholesteatoma extent in three out of six cases according to the ChOLE classification system, all of which were staged as Ch1a and Ch1b on pre-operative computed tomography. Cases in which computed tomography was not able correctly to determine congenital middle-ear cholesteatoma extent were staged as Ch3 on pre-operative computed tomography. Fusion scans correctly determined congenital middle-ear cholesteatoma extent in all cases according to the ChOLE classification.
Conclusions
Fusion computed tomography–diffusion-weighted magnetic resonance imaging may be helpful in cases of congenital middle-ear cholesteatoma where pre-operative computed tomography shows mastoid and antrum opacification, in which computed tomography alone may overestimate cholesteatoma extension beyond the level of the lateral semi-circular canal.
Robot positioning performance is studied in the scope of a robotized X-ray computed tomography application on a ABB IRB4600 robot. The robot has the “absolute accuracy” option, that is, the manufacturer has identified the manufacturing defects and included them in the robot control. Laser-tracker measurement on a 6.5-h long linear trajectory shows thermal drift and backlash issues, affecting the positioning unidirectional repeatability and bidirectional accuracy. A thermo-geometrical model with backlash compensation is developed. Geometrical calibration improves the forwards unidirectional mean accuracy from 1.39 to 0.06 mm between theoretical and optimized geometrical parameters with a stable thermal state. Thermo-geometrical calibration reduces the positioning scattering from a maximum of 0.15 to 0.05 mm (close to the repeatability of the robot). Backlash compensation improves the bidirectional mean accuracy from 1.53 to 0.07 mm.
X-ray computed tomography augmented by elemental microanalysis has been used to characterize two drill cores from the Borrowdale Volcanic Group, west Cumbria, UK. Information about the three-dimensional (3D) distribution of mineral phases was obtained non-destructively, and regionsof interest were extracted for thin sectioning and elemental analysis. This revealed the presence of pyrite and other iron- and iron-titanium-bearing minerals. X-ray computed tomography is a very useful tool for 3D visualization, but the limitations of the tomography system used made it difficultto distinguish between regions with similar compositions, such as the different layers within the calcite veins. Methods by which these limitations might be overcome are briefly discussed.
Deformation and mechanical damage in a three-dimensional braided carbon fiber reinforced carbon and silicon carbide ceramic composite, subjected to compressive loading, has been studied in situ by laboratory X-ray computed tomography. Dimensional change was measured and damage visualized by digital volume correlation analysis of tomographs. Cracks nucleated from defects within the fiber bundles and tended to propagate along the fiber bundle/matrix interface. For longitudinal compression, parallel to the fiber bundles, the initial elastic modulus decreased with increasing compressive strain while significant transverse tensile strains developed due to distributed cracking. For transverse compression, perpendicular to the fiber bundles, the compressive elastic modulus was effectively constant; the tensile strains developed along the fiber direction were small, whereas macroscopic fracture between the fiber bundles caused very large bulk tensile strain perpendicular to the loading. The observations suggest that the mechanical strength might be improved through control of pre-existing defects and application of stitch fibers in the transverse direction.
The three-dimensional distribution of melt in partially molten synthetic samples compositionally corresponding to diopside (90 wt.%)–anorthite (10 wt.%) and doped with PbO, WO3, MoO3, or Cs2O to enhance contrast was studied by X-ray computed tomography (CT) with synchrotron radiation. The heavy elements were strongly concentrated in the melt and contributed to an increase of the X-ray linear attenuation coefficient (LAC) of it. PbO was found to be compatible with silicate melt (>20 wt.% in solution) and incompatible with diopside crystals. Other oxides WO3 (∼10 wt.%), MoO3 (∼5 wt.%) and Cs2O (< 5 wt.%) are also soluble only in the melt. Such doping is useful not only for LAC control in X-ray CT measurements, but also for systematic control of the structure (wetting properties, distribution and connectivity) of partial melt. This technique gives basic information for discussion of the 3D distribution of partial melt having different wetting properties. As PbO was most effective in visualization of the diopside–anorthite partially molten system, CT images of the PbO-bearing sample were used for further 3D investigation of distribution. A distribution of dihedral angles at solid-melt-solid triple junctions ranging from 22 to 55° was observed with the 3D data. This range in angle distribution was probably caused by anisotropy of crystals and the result supports the argument that there is some limitation in a theoretical framework of stereology which estimates the 3D structure based on 2D observations. Investigators have begun to apply X-ray CT to the study of the 3D distribution of partial melts in rocks using synchrotron radiation. Our study on the effect of doping is one approach for developing a technique to investigate 3D melt distribution.
Intramuscular connective tissue plays an important role in meat tenderness. Our objective was to compare the collagen/hydroxyproline content and X-ray computed tomographic (CT) connective tissue proportion of longissimus thoracis (LT) muscle in Hungarian Simmental bulls and cows. Cows had lower carcass weight (247 kg v. 295 kg), EU conformation score (3.5 v. 5.5) and fatness score (4.2 v. 5.9) than bulls (P<0.01). Bulls had higher LT area, but intramuscular fat content was similar for bulls and cows. On the other hand, bulls had lower CT intramuscular connective tissue proportion in LT compared with cows (0.41±0.21% v. 0.66±0.28%, P<0.01). The same tendency could be observed for the collagen content (0.50±0.21% v. 0.67±0.11%, P<0.01). Correlation between the CT connective tissue proportion of LT and collagen content was r=0.8. There was a weak positive correlation between slaughter age and CT connective tissue as well as collagen content of LT (r=0.3 to 0.4). In conclusion, intramuscular connective tissue proportion in LT increased with slaughter age and older cows had higher collagen and connective tissue proportion than bulls. Mixed CT scans can be used for the analysis of intramuscular connective tissue content.
The use of in vivo X-ray microcomputed tomography (μCT) to study plant root systems has become routine, but is often hampered by poor contrast between roots, soil, soil water, and soil organic matter. In clinical radiology, imaging of poorly contrasting regions is frequently aided by the use of radio-opaque contrast media. In this study, we present evidence for the utility of iodinated contrast media (ICM) in the study of plant root systems using μCT. Different dilutions of an ionic and nonionic ICM (Gastrografin 370 and Niopam 300) were perfused into the aerial vasculature of juvenile pea plants via a leaf flap (Pisum sativum). The root systems were imaged via μCT, and a variety of image-processing approaches used to quantify and compare the magnitude of the contrast enhancement between different regions. Though the treatment did not appear to significantly aid extraction of full root system architectures from the surrounding soil, it did allow the xylem and phloem units of seminal roots and the vascular morphology within rhizobial nodules to be clearly visualized. The nonionic, low-osmolality contrast agent Niopam appeared to be well tolerated by the plant, whereas Gastrografin showed evidence of toxicity. In summary, the use of iodine-based contrast media allows usually poorly contrasting root structures to be visualized nondestructively using X-ray μCT. In particular, the vascular structures of roots and rhizobial nodules can be clearly visualized in situ.
Because a majority of urinary tract stones (UTSs) pass spontaneously and clinically significant alternative pathology is rare, we hypothesize that many computed tomographic (CT) scans to diagnose them are likely unnecessary. We sought to measure the impact of renal CT scans on resource use and to justify a prospective study to derive a score that predicts an emergent diagnosis in patients with suspected UTS by doing so in our retrospective series.
Methods:
We conducted a retrospective study of ED patients who had noncontrast CT of the abdomen for suspected UTS. A split-sample was used to derive and validate a score to predict the presence of an emergent diagnosis on CT.
Results:
Of the 2,315 patients (50.8% female, mean age 45 years), 49 (2.1%) had an emergent outcome observed on CT. An additional 12 (0.5%) patients had an urgent outcome and 239 (10.6%) had a urologic procedure within 8 weeks of the CT. Serum white blood cell count, highest temperature, urine red blood cell count, and the presence of abdominal pain were significant predictors of the primary outcome. A score derived using these predictors had a potential range of 22 (0.26% predicted risk, 0.5% actual risk of the outcome) to 6 (52% predicted risk). The score was moderately discriminatory with c-statistics of 0.752 (derivation) and 0.668 (validation) and accurate with Hosmer-Lemeshow statistics of 10.553 (p = 0.228, derivation) and 9.70 (p = 0.286, validation).
Conclusions:
A sensible, relevant score derived and validated on all patients presenting with symptoms suggestive of renal colic could be useful in reducing abdominal CT scan ordering.
Biochar has been reported to improve soil quality and crop yield; however, less is known about its effects on the physical and, in particular, structural properties of soil. This study examines the potential ability of biochar to improve water retention and crop growth through a pot trial using biochar concentrations of 0%, 1·5%, 2·5% and 5% w/w. X-ray computed tomography was used to measure soil structure via pore size characteristics; this showed that pore size is significantly affected by biochar concentration. Increasing biochar is associated with decreasing average pore size, which we hypothesise would impact heavily on hydraulic performance. At the end of the experiment, average pore size had decreased from 0·07 mm2 in the 0% biochar soil to 0·046 mm2 in the 5% biochar soil. Increased biochar concentration also significantly decreases saturated hydraulic conductivity and soil bulk density. It was also observed that increased biochar significantly decreases soil water repellency. Increased water retention was also observed at low matric potentials, where it was shown that increased biochar is able to retain more water as the soil dried out. The application of biochar had little effect on short-term (<10 weeks) wheat growth, but did improve water retention through a change in soil porosity, pore size, bulk density and wetting ability.
We describe the architecture of nitrifying bacteria biofilms immobilized on a three-dimensional (3D) polyurethane foam that permits efficient water flow through a bioreactor. The 3D spatial organization of immobilized bacterial colonies is characterized on three resolution levels with X-ray tomography, light confocal microscopy, and scanning electron microscopy (SEM). Using these techniques we demonstrate biofilm distribution in the foam and the existence of several modes of binding of bacteria to the foam. Computed X-ray tomography permits observation of the distribution of the biofilm in the whole open cellular polyurethane material volume and estimation of biofilm volume. SEM and confocal laser scanning microscopy techniques permit 3D visualization of biofilm structure. Three distinct immobilization patterns could be observed in the open cellular polyurethane material: (1) large irregular aggregates of bacterial biofilm that exist as irregular biofilm fragments, rope-like structures, or biofilm layers on the foam surface; (2) spherical (pom-pom) aggregates of bacteria localized on the external surface of biofilm; and (3) biofilm threads adherent to the surface of polyurethane foam. Finally, we demonstrate that immobilized bacteria exhibit metabolic activity and growth.
In this retrospective study, the computed tomography (CT) archives of paranasal sinus examinations were reviewed and three cases of antroliths are presented. The archivesof paranasal sinus CT studies of 1957 patients (1023 females, 934 males, mean age 36.5 years) were surveyed. CT studies were performed using 3 mm collimation and interval in the coronal, axial or both coronal and axial planes.
Three out of 1957 patients demonstrated antroliths, all in the left maxillary sinus. Associated sinusitis was detected in all three patients. Only one patient was operated. The chemical analysis of the antrolith revealed it to be a calcium oxalate stone. All the relevant literatureis reviewed and only 25 other cases of true antrolithiasis were encountered. The clinical and radiological features of antroliths,as well as differential diagnosis were discussed.
Antrolithiasis should be considered in any case of sinusitis, that does not respond to appropriate medical therapy.
Cone-beam X-ray microtomography attracts increasing attention due to its applications in biomedical sciences, material engineering, and industrial nondestructive evaluation. Rapid volumetric image reconstruction is highly desirable in all these areas for prompt visualization and analysis of complex structures of interest. In this article, we reformulate a generalized Feldkamp cone-beam image reconstruction algorithm, utilize curved voxels and mapping tables, improve the reconstruction efficiency by an order of magnitude relative to a direct implementation of the standard algorithm, and demonstrate the feasibility with numerical simulation and experiments using a prototype cone-beam X-ray microtomographic system. Our fast algorithm reconstructs a 256-voxel cube from 100 projections within 2 min on an Intel Pentium II® 233 MHz personal computer, produces satisfactory image quality, and can be further accelerated using special hardware and/or parallel processing techniques.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.