Although there is evidence that interspecific hybridization can initiate invasion by nonnative plants, there are few documented examples of novel hybridization events between introduced plant species already exhibiting invasive behavior. We conducted morphometric and molecular analyses of toadflax plants with intermediate morphology found at two sites in Montana, which were co-invaded by yellow toadflax and Dalmatian toadflax. Field-collected putative hybrid plants had intermediate morphometric scores (mean 0.47, on a scale of 0.0 = indistinguishable from Dalmatian toadflax to 1.0 = indistinguishable from yellow toadflax) for a suite of phenotypic traits that differentiate the parent species (leaf length : width ratio, growth form, seed morphology, inflorescence type, and ventral petal shape). Inter-simple sequence repeat (ISSR) analysis of a subset of these putative hybrids revealed combinations of species-diagnostic bands, confirming the presence of DNA from both parent species. Controlled interspecific hand-pollinations generated viable first generation (F1) hybrid plants that also had intermediate morphometric scores (mean 0.46) and a mix of species-diagnostic ISSR bands from both parents. The hand-generated F1 hybrids crossed readily with both parent species to produce viable first generation backcrossed (BC1) plants. Our results confirm that hybridization is occurring between invasive populations of yellow toadflax and Dalmatian toadflax, and that the hybrid progeny are viable and fertile. This example of hybridization between alien congeners is of concern as the parent taxa are already known to be highly invasive. Further research is needed to assess the invasive potential of hybrid toadflax populations, and the likelihood of introgressive trait transfer between the parent species.