Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T02:54:02.076Z Has data issue: false hasContentIssue false

Hybridization between Invasive Populations of Dalmatian Toadflax (Linaria dalmatica) and Yellow Toadflax (Linaria vulgaris)

Published online by Cambridge University Press:  20 January 2017

Sarah M. Ward*
Affiliation:
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
Caren E. Fleischmann
Affiliation:
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
Marie F. Turner
Affiliation:
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
Sharlene E. Sing
Affiliation:
USDA-USFS, Rocky Mountain Research Station, Bozeman, MT 59717
*
Corresponding author's E-mail: sarah.ward@colostate.edu

Abstract

Although there is evidence that interspecific hybridization can initiate invasion by nonnative plants, there are few documented examples of novel hybridization events between introduced plant species already exhibiting invasive behavior. We conducted morphometric and molecular analyses of toadflax plants with intermediate morphology found at two sites in Montana, which were co-invaded by yellow toadflax and Dalmatian toadflax. Field-collected putative hybrid plants had intermediate morphometric scores (mean 0.47, on a scale of 0.0 = indistinguishable from Dalmatian toadflax to 1.0 = indistinguishable from yellow toadflax) for a suite of phenotypic traits that differentiate the parent species (leaf length : width ratio, growth form, seed morphology, inflorescence type, and ventral petal shape). Inter-simple sequence repeat (ISSR) analysis of a subset of these putative hybrids revealed combinations of species-diagnostic bands, confirming the presence of DNA from both parent species. Controlled interspecific hand-pollinations generated viable first generation (F1) hybrid plants that also had intermediate morphometric scores (mean 0.46) and a mix of species-diagnostic ISSR bands from both parents. The hand-generated F1 hybrids crossed readily with both parent species to produce viable first generation backcrossed (BC1) plants. Our results confirm that hybridization is occurring between invasive populations of yellow toadflax and Dalmatian toadflax, and that the hybrid progeny are viable and fertile. This example of hybridization between alien congeners is of concern as the parent taxa are already known to be highly invasive. Further research is needed to assess the invasive potential of hybrid toadflax populations, and the likelihood of introgressive trait transfer between the parent species.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbott, R. J. 1992. Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends Ecol. Evol 7:401405.CrossRefGoogle ScholarPubMed
Alex, J. F. 1962. The taxonomy, history and distribution of Linaria dalmatica . Can. J. Bot 40:295307.Google Scholar
Andersen, R. N. 1968. Germination and establishment of weeds for experimental purposes. Geneva, NY Humphrey Press. 236 p.Google Scholar
Arnold, R. M. 1982. Pollination, predation and seed set in Linaria vulgaris (Scrophulariaceae). Am. Midl. Nat 107 (2):360369.Google Scholar
Bakshi, T. S. and Coupland, R. T. 1960. Vegetative propagation in Linaria vulgaris . Can. J. Bot 38:243249.CrossRefGoogle Scholar
Breiter, N. C. and Seastedt, T. R. 2007. Postrelease evaluation of Mecinus janthinus host specificity, a biological control agent for invasive toadflax (Linaria spp.). Weed Sci 55:164168.Google Scholar
Bruun, H. G. 1937. Genetical notes on Linaria, I–II. Hereditas 22:395401.Google Scholar
Buerkle, C. A. 2005. Maximum-likelihood estimate of a hybrid index based on molecular markers. Mol. Ecol. Notes 5:684687.Google Scholar
Burke, J. M. and Arnold, M. L. 2001. Genetics and the fitness of hybrids. Ann. Rev. Genet 35:3152.Google Scholar
Clapham, A. R., Tutin, T. G., and Warburg, E. F. 1957. Flora of the British Isles. Cambridge Cambridge, UK University Press. 1591 p.Google Scholar
DeClerck-Floate, R. and Richards, K. W. 1997. Pollination ecology and biocontrol: developing release strategies for seed feeding insects on Dalmatian toadflax. Acta Hortic. (Wageningen) 437:379384.Google Scholar
Dilleman, G. 1948. Remarques sur l'hybridation spontanee des Linaires dans les jardins botaniques. Bull. Mus. Hist. Nat. Paris 20:546547.Google Scholar
Docherty, Z. 1982. Self-incompatibility in Linaria . Heredity 49:349352.Google Scholar
Dray, F. A., Bennett, B. C., Center, T. D., Wheeler, G. S., and Madeira, P. T. 2004. Genetic variation in Melaleuca quinquenevia affects the biocontrol agent Oxyops vitiosa . Weed Technol 18:14001402.Google Scholar
Ellstrand, N. C. and Schierenbeck, K. A. 2000. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc. Natl. Acad. Sci 97:70437053.Google Scholar
Fernald, M. L. 1905. Some recently introduced weeds. Trans. Mass. Hortic. Soc. Part 1:1122.Google Scholar
Gammon, M. A., Grimsby, J. L., Tsirelson, D., and Kesseli, R. 2007. Molecular and morphological evidence reveals introgression in swarms of the invasive taxa Fallopia japonica, F. sachalinensis, and F. bohemica (Polygonaceae) in the United States. Am. J. Bot 94:948956.CrossRefGoogle Scholar
Gaskin, J. F. and Schaal, B. A. 2002. Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range. Proc. Natl. Acad. Sci 99:125611,259.Google Scholar
Gupta, B. J., Chyi, Y. S., Romero-Severson, J., and Owen, J. L. 1994. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet 89:9981006.Google Scholar
Hering, K. L. 2002. Genetic and Behavioral Variability in the Ovary-feeding Nitidulid Brachypterolus pulicarius Collected from Dalmatian and Yellow Toadflax. M.S. thesis. Bozeman, MT Department of Entomology, Montana State University. 113 p.Google Scholar
Lajeunesse, S. E. 1999. Dalmatian and yellow toadflax. Pages 202216. In Sheley, R. L. and Petroff, J. K. Biology and Management of Noxious Rangeland Weeds. Corvallis, OR Oregon State University Press.Google Scholar
Lee, C. E. 2002. Evolutionary genetics of invasive species. Trends Ecol. Evol 7:386390.Google Scholar
Lewontin, R. C. and Birch, L. C. 1966. Hybridization as a source of variation for adaptation to new environments. Evolution 20:315336.CrossRefGoogle ScholarPubMed
Mack, R. N. 2003. Plant naturalizations and invasions in the eastern United States: 1634–1860. Ann. Missouri Bot. Garden 90:7790.Google Scholar
MacKinnon, D. K., Hufbauer, R. A., and Norton, A. P. 2005. Host-plant preference of Brachypterolus pulicarius, an inadvertently introduced biological control insect of toadflaxes. Entomol. Exp. Appl 116:183189.Google Scholar
McClay, A. S. and Hughes, R. B. 2007. Temperature and host-plant effects on development and population growth of Mecinus janthinus (Coleoptera ∶ Curculionidae), a biological control agent for invasive Linaria spp. Biol. Control 40:405410.Google Scholar
Milne, R. I. and Abbott, R. J. 2000. Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Mol. Ecol 9:541556.Google Scholar
Minder, A. M., Rothenbuehler, C., and Widmer, A. 2007. Genetic structure of hybrid zones between Silene latifolia and Silene dioica (Caryophyllaceae): evidence for hybridization. Mol. Ecol 16:25042516.Google Scholar
Moody, M. L. and Les, D. H. 2002. Evidence of hybridity in invasive watermilfoil (Myriophyllum) populations. Proc. Natl. Acad. Sci 99:14,86714,871.Google Scholar
Moody, M. L. and Les, D. H. 2007. Geographica distribution and genotypic composition of invasive hybrid watermilfoil (Myriophyllum spicatum × M. sibiricum) populations in N. Am. Biol. Invasions 9:559570.Google Scholar
Moore, D. M. 1982. Flora Europaea Checklist and Chromosome Index. Cambridge, UK Cambridge University Press. 423 p.CrossRefGoogle Scholar
Nadeau, L. B. and King, J. R. 1991. Seed dispersal and seedling establishment of Linaria vulgaris Mill. Can. J. Plant Sci 71:771782.Google Scholar
Nadeau, L. B., King, J. R., and Harker, K. N. 1992. Comparison of growth of seedlings and plants grown from root pieces of yellow toadflax (Linaria vulgaris). Weed Sci 40:4347.CrossRefGoogle Scholar
Osborne, J. L., Martin, A. P., Carreck, N. L., Swain, J. L., Knight, M. E., Goulson, D., Hale, R. J., and Sanders, R. A. 2008. Bumblebee flight distances in relation to the forage landscape. J. Anim. Ecol 77:406415.CrossRefGoogle Scholar
Parker, R. and Peabody, D. 1983. Yellow Toadflax and Dalmatian Toadflax. Pacific Northwest Cooperative Extension Bulletin 135. Pullman, WA Washington State University. 4 p.Google Scholar
Rieseberg, L. H. 1997. Hybrid origins of plant species. Annu. Rev. Ecol. Syst 28:59389.Google Scholar
Rieseberg, L. H. and Carney, S. E. 1998. Tansley review no. 102: plant hybridization. New Phytol 140:599624.Google Scholar
Rieseberg, L. H. and Ellstrand, N. C. 1993. What can molecular and morphological markers tell us about plant hybridization? Crit. Rev. Plant Sci 12:213241.Google Scholar
Rieseberg, L. H., Kim, S. C., Randell, R. A., Whitney, K. D., Gross, B. L., Lexer, C., and Clay, K. 2007. Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149165.Google Scholar
Robocker, W. C. 1970. Seed characteristics and seedling emergence of Dalmatian toadflax. Weed Science 18 (6):720725.Google Scholar
Robocker, W. C. 1974. Life History, Ecology, and Control of Dalmatian Toadflax. Technical Bulletin 79. Pullman, WA Washington Agricultural Experiment Station, Washington State University. 20 p.Google Scholar
Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., Baughman, S., Cabin, R. J., Cohen, J. E., Ellstrand, N. C., McCauley, D. E., O'Neill, P., Parker, I. M., Thompson, J. N., and Weller, S. G. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst 32:305332.Google Scholar
Schierenbeck, K. A. and Ellstrand, N. C. 2009. Hybridization and the evolution of invasiveness in plants and other organisms. Biol. Invasions 11:10931105.Google Scholar
Sebastian, J. R. and Beck, K. G. 1998. The Influence of Picloram or Picloram Plus 2,4-D Applied for 1, 2 or 3 Years on Cover, Density and Control of Yellow Toadflax on Colorado Rangeland. Research Progress Report. Waikoloa Western Society of Weed Science. 24 p.Google Scholar
Sebastian, J. R. and Beck, K. G. 1999. Yellow Toadflax Control with Metsulfuron, Metsulfuron Tank Mixes, Picloram, Quinclorac, 2,4-D, or Dicamba. Research Progress Report. Colorado Springs Western Society of Weed Science. 3637.Google Scholar
Stace, C. A. 1975. Hybridization and Flora of the British Isles. London, UK Academic. 173 p.Google Scholar
Stebbins, G. L. 1959. The role of hybridization in evolution. Proc. Am. Philos. Soc 103:231251.Google Scholar
Sutton, J. R., Stohlgren, T. J., and Beck, K. G. 2007. Predicting yellow toadflax infestations in the Flat Tops Wilderness of Colorado. Biol. Invasions 9:783793.Google Scholar
Tiebre, M. S., Bizoux, J. P., Hardy, O. J., Bailey, J. P., and Mahy, G. 2007. Hybridization and morphogenetic variation in the invasive alien Fallopia (Polygonaceae) complex in Belgium. Am. J. Bot 94:19001910.Google Scholar
Trusty, J. L., Lockaby, B. G., Zipperer, W. C., and Goertzen, L. R. 2007. Identity of naturalized exotic Wisteria (Fabaceae) in the southeastern United States. Weed Res 47:479487.Google Scholar
Vujnovic, K. and Wein, R. W. 1997. The biology of Canadian weeds. 106. Linaria dalmatica (L.) Mill. Can. J. Plant Sci 77:483491.Google Scholar
Ward, S. M., Reid, S. D., Harrington, J., Sutton, J. R., and Beck, K. G. 2008. Genetic variation in invasive populations of yellow toadflax (Linaria vulgaris) in the western United States. Weed Sci 56:394399.Google Scholar
Whitney, K. D., Randell, R. A., and Rieseberg, L. H. 2006. Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus . Am. Nat 67:94807.Google Scholar
Wilson, L. M., Sing, S. E., Piper, G. L., Hansen, R. W., DeClerck-Floate, R., MacKinnon, D. K., and Randall, C. B. 2005. Biology and Biological Control of Dalmatian and Yellow Toadflax. Morgantown, VA USDA Forest Service, Forest Health Enterprise Technology Team, FHTET-2005-13. 116 p.Google Scholar
Zalucki, M. P., Day, M. D., and Playford, J. 2007. Will biological control of Lantana camara ever succeed? Patterns, processes and prospects. Biol. Control 42:251261.CrossRefGoogle Scholar
Zirkel, C. 1935. The Beginnings of Plant Hybridization. Philadelphia, PA University of Pennsylvania Press. 231 p.Google Scholar