We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $A$ be an abelian variety defined over a field $k$. In this paper we define a descending filtration $\{F^{r}\}_{r\geqslant 0}$ of the group $\mathit{CH}_{0}(A)$ and prove that the successive quotients $F^{r}/F^{r+1}\otimes \mathbb{Z}[1/r!]$ are isomorphic to the group $(K(k;A,\dots ,A)/Sym)\otimes \mathbb{Z}[1/r!]$, where $K(k;A,\dots ,A)$ is the Somekawa $K$-group attached to $r$-copies of the abelian variety $A$. In the special case when $k$ is a finite extension of $\mathbb{Q}_{p}$ and $A$ has split multiplicative reduction, we compute the kernel of the map $\mathit{CH}_{0}(A)\otimes \mathbb{Z}[\frac{1}{2}]\rightarrow \text{Hom}(Br(A),\mathbb{Q}/\mathbb{Z})\otimes \mathbb{Z}[\frac{1}{2}]$, induced by the pairing $\mathit{CH}_{0}(A)\times Br(A)\rightarrow \mathbb{Q}/\mathbb{Z}$.
We compare two known definitions for a relative family of effective zero cycles: one based on traces of functions and one based on norms of functions. In characteristic zero we show that both definitions agree. In the general setting we show that the norm map on functions can be expanded to a norm functor between certain categories of line bundles, thereby giving a third approach to families of zero cycles.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.