Skip to main content Accessibility help
×
  • Cited by 157
Publisher:
Cambridge University Press
Online publication date:
October 2017
Print publication year:
2017
Online ISBN:
9781316711736

Book description

Algebraic groups play much the same role for algebraists as Lie groups play for analysts. This book is the first comprehensive introduction to the theory of algebraic group schemes over fields that includes the structure theory of semisimple algebraic groups, and is written in the language of modern algebraic geometry. The first eight chapters study general algebraic group schemes over a field and culminate in a proof of the Barsotti–Chevalley theorem, realizing every algebraic group as an extension of an abelian variety by an affine group. After a review of the Tannakian philosophy, the author provides short accounts of Lie algebras and finite group schemes. The later chapters treat reductive algebraic groups over arbitrary fields, including the Borel–Chevalley structure theory. Solvable algebraic groups are studied in detail. Prerequisites have also been kept to a minimum so that the book is accessible to non-specialists in algebraic geometry.

Reviews

'All together, this excellent text fills a long-standing gap in the textbook literature on algebraic groups. It presents the modern theory of group schemes in a very comprehensive, systematic, detailed and lucid manner, with numerous illustrating examples and exercises. It is fair to say that this reader-friendly textbook on algebraic groups is the long-desired modern successor to the old, venerable standard primers …'

Werner Kleinert Source: zbMath

'The author invests quite a lot to make difficult things understandable, and as a result, it is a real pleasure to read the book. All in all, with no doubt, Milne's new book will remain for decades an indispensable source for everybody interested in algebraic groups.'

Boris È. Kunyavskiĭ Source: MathSciNet

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 2 of 2



Page 2 of 2


References
Adams, J. 2013. Galois cohomology of real groups. arxiv:1310.7917.
Adams, J. F. 1969. Lectures on Lie groups. W. A. Benjamin, Inc., New York and Amsterdam.
Allcock, D. 2009. A new approach to rank one linear algebraic groups. J. Algebra 321:2540–2544.
Balaji, V., Deligne, P., and Parameswaran, A. J. 2016. On complete reducibility in characteristic p. arxiv:1607.08564.
Barsotti, I. 1953. A note on abelian varieties. Rend. Circ. Mat. Palermo (2) 2:236–257.
Barsotti, I. 1955. Un teorema di struttura per le variet`a gruppali. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 18:43–50.
Bate, M., Martin, B., Röhrle, G., and Tange, R. 2010. Complete reducibility and separability. Trans. Amer. Math. Soc. 362:4283–4311.
Bergman, G. M. 1978. The diamond lemma for ring theory. Adv. in Math. 29:178–218.
Berrick, A. J. and Keating, M. E. 2000. An introduction to rings and modules with K-theory in view. Cambridge Studies in Advanced Mathematics, Vol. 65. Cambridge University Press, Cambridge.
BiałYnicki-Birula, A. 1973. Some theorems on actions of algebraic groups. Ann. of Math. (2) 98:480–497.
BiałYnicki-Birula, A. 1976. Some properties of the decompositions of algebraic varieties determined by actions of a torus. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 24:667–674.
Birkhoff, G. 1937. Representability of Lie algebras and Lie groups by matrices. Ann. of Math. (2) 38:526–532.
Borel, A. 1956. Groupes linéaires algébriques. Ann. of Math. (2) 64:20–82.
Borel, A. 1970. Properties and linear representations of Chevalley groups, pp. 1– 55. In Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, NJ, 1968/69), Lecture Notes in Mathematics, Vol. 131. Springer-Verlag, Berlin.
Borel, A. 1975. Linear representations of semi-simple algebraic groups, pp. 421–440. In Algebraic geometry (Proceedings of Symposia in Pure Mathematics, Vol. 29, Humboldt State University, Arcata, Calif., 1974). American Mathematical Society, Providence, RI.
Borel, A. 1985. On affine algebraic homogeneous spaces. Arch. Math. (Basel) 45:74–78.
Borel, A. 1991. Linear algebraic groups. Graduate Texts in Mathematics, Vol. 126. Springer-Verlag, Berlin.
Borel, A. and Harder, G. 1978. Existence of discrete cocompact subgroups of reductive groups over local fields. J. Reine Angew. Math. 298:53–64.
Borel, A. and Springer, T. A. 1966. Rationality properties of linear algebraic groups, pp. 26–32. In Algebraic Groups and Discontinuous Subgroups (Proceedings of Symposia in Pure Mathematics, Boulder, CO, 1965). American Mathematical Society, Providence, RI.
Borel, A. and Springer, T. A. 1968. Rationality properties of linear algebraic groups. II. Tˆohoku Math. J. (2) 20:443–497.
Borel, A. and Tits, J. 1965. Groupes reductifs. Inst. Hautes Etudes Sci. Publ. Math. 27:55–150.
Borel, A. and Tits, J. 1972. Compléments à l'article: “Groupes réductifs”. Inst. Hautes Études Sci. Publ. Math. 41:253–276.
Borel, A. and Tits, J. 1978. Théorèmes de structure et de conjugaison pour les groupes algébriques linéaires. C. R. Acad. Sci. Paris Sér. A-B 287:A55–A57.
Borovoi, M. 2014. Galois cohomology of reductive algebraic groups over the field of real numbers. arxiv:1401.5913.
Borovoi, M. and Timashev, D. A. 2015. Galois cohomology of real semisimple groups. arxiv:1506.06252.
Bosch, S., Lütkebohmert, W., and Raynaud, M. 1990. Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 21. Springer-Verlag, Berlin.
Bourbaki, N. 1958. Algèbre. Chapitre 8: Modules et anneaux semi-simples. Hermann, Paris.
Bourbaki, N. 1968. Groupes et algèbres de Lie. Chapitres 4, 5 et 6. Hermann, Paris.
Bourbaki, N. 1972. Groupes et algèbres de Lie. Chapitres 2 et 3. Hermann, Paris.
Bourbaki, N. 1975. Groupes et algèbres de Lie. Chapitres 7 et 8. Hermann, Paris.
Brion, M. 2009. Anti-affine algebraic groups. J. Algebra 321:934–952.
Brion, M. 2015a. On extensions of algebraic groups with finite quotient. Pacific J. Math. 279:135–153.
Brion, M. 2015b. Some structure theorems for algebraic groups. arxiv:1509.03059.
Brion, M. 2016. Epimorphic subgroups of algebraic groups. arxiv:1605.07769.
Brion, M., Samuel, P., and Uma, V. 2013. Lectures on the structure of algebraic groups and geometric applications. CMI Lecture Series in Mathematics, Vol 1. Hindustan Book Agency, New Delhi.
Brochard, S. 2014. Topologies de Grothendieck, descente, quotients, pp. 1–62. In Autour des schémas en groupes Vol. I, Panoramas et Synthèses, Vol. 42/43. Société Mathématique de France, Paris.
Brosnan, P. 2005. On motivic decompositions arising from the method of Białynicki- Birula. Invent. Math. 161:91–111.
Bruhat, F. and Tits, J. 1987. Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34:671–698.
Cartier, P. 1962. Groupes algébriques et groupes formels, pp. 87–111. In Colloque sur la Théorie des Groupes Algébriques (Bruxelles, 1962). Librairie Universitaire, Louvain.
Cartier, P. 2005. Sur les problèmes de classification des groups, pp. 266–274. In Classification des groupes algébriques semi-simples (Collected works, Vol. 3). Springer- Verlag, Berlin.
Casselman, B. 2015. On Chevalley's formula for structure constants. J. Lie Theory 25:431–441.
Cayley, A. 1846. Sur quelques propriétés des déterminants gauches. J. Reine Angew. Math. 32:119–123.
Chernousov, V.I. 1989. The Hasse principle for groups of type E8. Dokl. Akad. Nauk SSSR 306:1059–1063.
Chevalley, C.C. 1955a. Sur certains groupes simples. Tôhoku Math. J. (2) 7:14–66.
Chevalley, C.C. 1955b. Théorie des groupes de Lie. Tome III. Théorèmes généraux sur les algèbres de Lie. Actualités Scientifiques et Industrielles no. 1226. Hermann, Paris.
Chevalley, C.C. 1956–58. Classification des groupes de Lie algébriques, Seminaire ENS, Paris. mimeographed. Reprinted by Springer-Verlag, Berlin, 2005.
Chevalley, C.C. 1960. Une démonstration d'un théorème sur les groupes algébriques. J. Math. Pures Appl. (9) 39:307–317.
Chevalley, C.C. 1961. Certains schémas de groupes semi-simples, pp. 219–234. In Séminaire Bourbaki, Vol. 6 Exp. No. 219. Société Mathématique de France, Paris.
Conrad, B. 2014. Reductive group schemes, pp. 93–444. In Autour des schémas en groupes. Vol. I, Panoramas et Synthèses, Vol. 42/43. Société Mathématique de France, Paris.
Conrad, B., Gabber, O., and Prasad, G. 2015. Pseudo-reductive groups. New Mathematical Monographs, Vol. 26. Cambridge University Press, Cambridge, second edition.
De Graaf, W. A. 2007. Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. J. Algebra 309:640–653.
Deligne, P. 1990. Catégories tannakiennes, pp. 111–195. In The Grothendieck Festschrift, Vol. II, Progress in Mathematics. Birkhäuser Boston, Boston, MA.
Deligne, P. 2014. Semi-simplicité de produits tensoriels en caractéristique p. Invent. Math. 197:587–611.
Deligne, P. and Lusztig, G. 1976. Representations of reductive groups over finite fields. Ann. of Math. (2) 103:103–161.
Deligne, P. and Milne, J.S. 1982. Tannakian categories, pp. 101–228. In Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, Vol. 900. Springer-Verlag, Berlin.
Demazure, M. 1965. Schémas en groupes réductifs. Bull. Soc. Math. France 93:369– 413.
Demazure, M. 1972. Lectures on p-divisible groups. Lecture Notes in Mathematics, Vol. 302. Springer-Verlag, Berlin.
Demazure, M. and Gabriel, P. 1966. Séminaire Heidelberg–Strasbourg 1965–66 (Groupes Algébriques). Multigraphié par l'Institut de Mathématique de Strasbourg, 406 pages. Cited as SHS.
Demazure, M. and Gabriel, P. 1970. Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Masson, Paris. Cited as DG.
Demazure, M. and Grothendieck, A. 1964. Schémas en groupes (SGA 3). Séminaire de Géométrie Algébrique du Bois Marie 1962–64. Dirigé par M., Demazure et A., Grothendieck. Multigraphié par I.H.E.S; reprinted by Springer-Verlag, Berlin: Lecture Notes in Mathematics, Vols 151, 152, 153 (1970).
Demazure, M. and Grothendieck, A. 2011. Schémas en groupes (SGA 3). Séminaire de Géométrie Algébrique du Bois Marie 1962–64. Dirigé par M., Demazure et A., Grothendieck. Documents Mathématiques, Vol. 7,8. Société Mathématique de France, Paris. Revised edition of Demazure and Grothendieck 1964. Annotated and edited by Gille, P., and Polo, P.. Cited as SGA 3.
DokovíC, D.Z. 1988. An elementary proof of the structure theorem for connected solvable affine algebraic groups. Enseign. Math. (2) 34:269–273.
Fogarty, J. 1973. Fixed point schemes. Amer. J. Math. 95:35–51.
Fogarty, J. and Norman, P. 1977. A fixed-point characterization of linearly reductive groups, pp. 151–155. In Contributions to algebra (collection of papers dedicated to Ellis Kolchin). Academic Press, New York.
Fossum, R. and Iversen, B. 1973. On Picard groups of algebraic fibre spaces. J. Pure Appl. Algebra 3:269–280.
Garibaldi, R.S. 1998. Isotropic trialitarian algebraic groups. J. Algebra 210:385–418.
Garibaldi, R.S. 2001. Groups of type E7 over arbitrary fields. Comm. Algebra 29:2689–2710.
Garibaldi, S. 2016. E8, the most exceptional group. Bull. Amer. Math. Soc. (N.S.) 53:643–671.
Geck, M. 2016. On the construction of semisimple Lie algebras and Chevalley groups. arxiv:1602.04583.
Grothendieck, A. 1967. Eléments de géométrie algébrique. Publ. Math. IHES 4, 8, 11, 17, 20, 24, 28, 32. (1960–67) En collaboration avec J. Dieudonné. Cited as EGA.
Grothendieck, A. 1972. Groupes de monodromie en géométrie algébrique. I. Lecture Notes in Mathematics, Vol. 288. Springer-Verlag, Berlin. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I).
Harder, G. 1965. Über einen Satz von E. Cartan. Abh. Math. Sem. Univ. Hamburg 28:208–214.
Harder, G. 1966. Über die Galoiskohomologie halbeinfacher Matrizengruppen. II. Math. Z. 92:396–415.
Harder, G. 1975. Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III. J. Reine Angew. Math. 274/275:125–138.
Harebov, A. and Vavilov, N. 1996. On the lattice of subgroups of Chevalley groups containing a split maximal torus. Comm. Algebra 24:109–133.
Hartshorne, R. 1977. Algebraic geometry. Graduate Texts in Mathematics, Vol. 52. Springer-Verlag, Berlin.
Herpel, S. 2013. On the smoothness of centralizers in reductive groups. Trans. Amer. Math. Soc. 365:3753–3774.
Hesselink, W.H. 1981. Concentration under actions of algebraic groups, pp. 55–89. In Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980), Lecture Notes in Mathematics, Vol. 867. Springer-Verlag, Berlin.
Hochschild, G.P. 1981. Basic theory of algebraic groups and Lie algebras. Graduate Texts in Mathematics, Vol. 75. Springer-Verlag, Berlin.
Humphreys, J.E. 1972. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, Berlin.
Humphreys, J.E. 1975. Linear algebraic groups. Graduate Texts in Mathematics, No. 21. Springer-Verlag, Berlin.
Humphreys, J.E. 1990. Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, Vol. 29. Cambridge University Press, Cambridge.
Humphreys, J.E. 1995. Conjugacy classes in semisimple algebraic groups. Mathematical Surveys and Monographs, Vol. 43. American Mathematical Society, Providence, RI.
Iversen, B. 1972. A fixed point formula for action of tori on algebraic varieties. Invent. Math. 16:229–236.
Iversen, B. 1976. The geometry of algebraic groups. Advances in Math. 20:57–85.
Jacobson, N. 1962. Lie algebras. Interscience Tracts in Pure and Applied Mathematics, No. 10. Interscience Publishers, Inc., New York and London. Reprinted by Dover, New York, 1979.
Jacobson, N. 1985. Basic algebra. I. W. H. Freeman and Company, New York, second edition.
Jacobson, N. 1989. Basic algebra. II. W. H. Freeman and Company, New York, second edition.
Jantzen, J.C. 1997. Low-dimensional representations of reductive groups are semisimple, pp. 255–266. In Algebraic groups and Lie groups, Australian Mathematical Society Lecture Series., Vol. 9. Cambridge University Press, Cambridge.
Jantzen, J.C. 2003. Representations of algebraic groups. Mathematical Surveys and Monographs, Vol. 107. American Mathematical Society, Providence, RI, second edition.
Kambayashi, T., Miyanishi, M., and Takeuchi, M. 1974. Unipotent algebraic groups. Lecture Notes in Mathematics, Vol. 414. Springer-Verlag, Berlin.
Kambayashi, T. and Russell, P. 1982. On linearizing algebraic torus actions. J. Pure Appl. Algebra 23:243–250.
Kempf, G.R. 1976. Linear systems on homogeneous spaces. Ann. of Math. (2) 103:557– 591.
Kneser, M. 1969. Lectures on Galois cohomology of classical groups. Tata Institute of Fundamental Research, Bombay.
Knus, M.-A., Merkurjev, A., Rost, M., and Tignol, J.-P. 1998. The book of involutions. American Mathematical Society Colloquium Publications, Vol. 44. American Mathematical Society, Providence, RI.
Kohls, M. 2011. A user friendly proof of Nagata's characterization of linearly reductive groups in positive characteristics. Linear Multilinear Algebra 59:271–278.
Kolchin, E.R. 1948. Algebraic matric groups and the Picard–Vessiot theory of homogeneous linear ordinary differential equations. Ann. of Math. (2) 49:1–42.
Kostant, B. 1966. Groups over Z, pp. 90–98. In Algebraic Groups and Discontinuous Subgroups (Proceedings of Symposia in Pure Mathematics, Vol. 9, Boulder, CO, 1965). American Mathematical Society, Providence, RI.
Lang, S. 1956. Algebraic groups over finite fields. Amer. J. Math. 78:555–563.
Lang, S. 2002. Algebra. Graduate Texts in Mathematics, Vol. 211. Springer-Verlag, Berlin.
Lazard, M. 1955. Sur les groupes de Lie formels à un paramètre. Bull. Soc. Math. France 83:251–274.
Lemire, N., Popov, V.L., and Reichstein, Z. 2006. Cayley groups. J. Amer. Math. Soc. 19:921–967.
Luna, D. 1999. Retour sur un théorème de Chevalley. Enseign. Math. (2) 45:317–320.
Lusztig, G. 2009. Study of a Z-form of the coordinate ring of a reductive group. J. Amer. Math. Soc. 22:739–769.
Mac Lane, S. 1969. One universe as a foundation for category theory, pp. 192–200. In Reports of the Midwest Category Seminar. III, Lecture Notes in Mathematics, Vol. 195. Springer-Verlag, Berlin.
Mac Lane, S. 1971. Categories for the working mathematician. Graduate Texts in Mathematics, Vol. 5. Springer-Verlag, Berlin.
Magid, A. 2011. The Hochschild–Mostow group. Notices Amer. Math. Soc. 58:1089– 1090.
Malle, G. and Testerman, D. 2011. Linear algebraic groups and finite groups of Lie type. Cambridge Studies in Advanced Mathematics, Vol. 133. Cambridge University Press, Cambridge.
Matsumura, H. 1986. Commutative ring theory. Cambridge Studies in Advanced Mathematics, Vol. 8. Cambridge University Press, Cambridge.
Matsusaka, T. 1953. Some theorems on Abelian varieties. Nat. Sci. Rep. Ochanomizu Univ. 4:22–35.
Mcninch, G. 2013. On the descent of Levi factors. Arch. Math. (Basel) 100:7–24.
Mcninch, G.J. 1998. Dimensional criteria for semisimplicity of representations. Proc. London Math. Soc. (3) 76:95–149.
Mcninch, G.J. 2005. Optimal SL.2/-homomorphisms. Comment. Math. Helv. 80:391– 426.
Mcninch, G.J. 2010. Levi decompositions of a linear algebraic group. Transform. Groups 15:937–964.
Mcninch, G.J. 2014a. Levi factors of the special fiber of a parahoric group scheme and tame ramification. Algebr. Represent. Theory 17:469–479.
Mcninch, G.J. 2014b. Linearity for actions on vector groups. J. Algebra 397:666–688.
Milne, J.S. 1986. Abelian varieties, pp. 103–150. In Arithmetic geometry (Storrs, Conn., 1984). Springer-Verlag, Berlin.
Milne, J.S. 2007. Semisimple algebraic groups in characteristic zero. arxiv:0705.1348.
Milne, J.S. 2013. A proof of the Barsotti–Chevalley theorem on algebraic groups. arxiv:1311.6060.
Milne, J.S. 2017. A primer of commutative algebra, v4.02. Available at www.jmilne.org/math and http://hdl.handle.net/2027.42/136228. Cited as CA.
Milne, J.S. and Shih, K.-Y. 1982. Conjugates of Shimura varieties, pp. 280–356. In Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, Vol. 900. Springer-Verlag, Berlin.
MirkovĆ, I. and Vilonen, K. 2007. Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. of Math. (2) 166:95–143.
Müller, P. 2003. Algebraic groups over finite fields, a quick proof of Lang's theorem. Proc. Amer. Math. Soc. 131:369–370.
Mumford, D. 1970. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, Vol. 5. Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London.
Mumford, D., Fogarty, J., and Kirwan, F. 1994. Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), Vol. 34. Springer-Verlag, Berlin, third edition.
Nagata, M. 1960. On the fourteenth problem of Hilbert, pp. 459–462. In Proceedings International Congress of Mathematics 1958. Cambridge University Press, Cambridge.
Nagata, M. 1961/1962. Complete reducibility of rational representations of a matric group. J. Math. Kyoto Univ. 1:87–99.
Nielsen, H.A. 1974. Diagonalizably linearized coherent sheaves. Bull. Soc. Math. France 102:85–97.
Nori, M.V. 1987. On subgroups of GLn.Fp/. Invent. Math. 88:257–275.
Oesterĺe, J. 1984. Nombres de Tamagawa et groupes unipotents en caractéristique p. Invent. Math. 78:13–88.
Oort, F. 1966. Algebraic group schemes in characteristic zero are reduced. Invent. Math. 2:79–80.
Pink, R. 2004. On Weil restriction of reductive groups and a theorem of Prasad. Math. Z. 248:449–457.
Platonov, V. and Rapinchuk, A. 1994. Algebraic groups and number theory. Pure and Applied Mathematics, Vol. 139. Academic Press Inc., Boston, MA.
Popov, V.L. 2015. On the equations defining affine algebraic groups. Pacific J. Math. 279:423–446.
Prasad, G. and Rapinchuk, A.S. 2006. On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior. Adv. Math. 207:646–660.
Prasad, G. and Yu, J.-K. 2006. On quasi-reductive group schemes. J. Algebraic Geom. 15:507–549. With an appendix by Brian Conrad.
Raghunathan, M.S. 2015. On Chevalley's Z-form. Indian J. Pure Appl. Math. 46:695–700.
Raynaud, M. 1970. Faisceaux amples sur les schémas en groupes et les espaces homogènes. Lecture Notes in Mathematics, Vol. 119. Springer-Verlag, Berlin.
Ree, R. 1964. Commutators in semi-simple algebraic groups. Proc. Amer. Math. Soc. 15:457–460.
Richardson, R.W. 1977. Affine coset spaces of reductive algebraic groups. Bull. London Math. Soc. 9:38–41.
Rosenlicht, M. 1956. Some basic theorems on algebraic groups. Amer. J. Math. 78:401–443.
Rosenlicht, M. 1957. Some rationality questions on algebraic groups. Ann. Mat. Pura Appl. (4) 43:25–50.
Rosenlicht, M. 1961. Toroidal algebraic groups. Proc. Amer. Math. Soc. 12:984–988.
Rosenlicht, M. 1963. Questions of rationality for solvable algebraic groups over nonperfect fields. Ann. Mat. Pura Appl. (4) 61:97–120.
Russell, P. 1970. Forms of the affine line and its additive group. Pacific J. Math. 32:527–539.
Saavedra Rivano, N. 1972. Catégories Tannakiennes. Lecture Notes in Mathematics, Vol. 265. Springer-Verlag, Berlin.
Sancho De Salas, C. 2001. Grupos algebraicos y teoŕıa de invariantes. Aportaciones Matemáticas: Textos, Vol. 16. Sociedad Matemática Mexicana, México.
Sancho De Salas, C. and Sancho De Salas, F. 2009. Principal bundles, quasiabelian varieties and structure of algebraic groups. J. Algebra 322:2751–2772.
Satake, I. 1963. On the theory of reductive algebraic groups over a perfect field. J. Math. Soc. Japan 15:210–235.
Satake, I. 1967. Symplectic representations of algebraic groups satisfying a certain analyticity condition. Acta Math. 117:215–279.
Satake, I. 1971. Classification theory of semi-simple algebraic groups. Lecture Notes in Pure and Applied Mathematics, Vol. 3. Marcel Dekker, Inc., New York. With an appendix by M. Sugiura.
Scharlau, W. 1985. Quadratic and Hermitian forms. Grundlehren der Mathematischen Wissenschaften, Vol. 270. Springer-Verlag, Berlin.
Selbach, M. 1976. Klassifikationstheorie halbeinfacher algebraischer Gruppen. Mathematisches Institut der Universität Bonn, Bonn. Diplomarbeit, Universität Bonn, Bonn, 1973, Bonner Mathematische Schriften, Nr. 83.
Serre, J.-P. 1959. Groupes algébriques et corps de classes. Publications de l'institut de mathématique de l'université de Nancago, VII. Hermann, Paris. Translated as Algebraic groups and class fields, Springer-Verlag, Berlin, 1988.
Serre, J.-P. 1962. Corps locaux. Publications de l'institut de mathématique de l'université de Nancago, VIII. Hermann, Paris. Translated as Local fields, Springer- Verlag, Berlin, 1979.
Serre, J.-P. 1966. Algèbres de Lie semi-simples complexes. W. A., Benjamin, Inc., New York and Amsterdam. Translated as Complex semisimple Lie algebras, Springer-Verlag, Berlin, 1987.
Serre, J.-P. 1970. Cours d'arithmétique. Collection SUP: “Le Mathématicien”, Vol. 2. Presses Universitaires de France, Paris. Translated as A Course in Arithmetic, Springer- Verlag, Berlin, 1973.
Serre, J.-P. 1993. Gèbres. Enseign. Math. (2) 39:33–85.
Serre, J.-P. 1994. Sur la semi-simplicité des produits tensoriels de représentations de groupes. Invent. Math. 116:513–530.
Serre, J.-P. 1997. Galois cohomology. Springer-Verlag, Berlin. Translation of Cohomologie Galoisienne; revised by the author.
Sopkina, E. 2009. Classification of all connected subgroup schemes of a reductive group containing a split maximal torus. J. K-Theory 3:103–122.
Springer, T.A. 1977. Invariant theory. Lecture Notes in Mathematics, Vol. 585. Springer-Verlag, Berlin.
Springer, T.A. 1979. Reductive groups, pp. 3–27. In Automorphic forms, representations and L-functions (Proceedings of Symposia in Pure Mathematics, Vol. 33, Part 1, Oregon State University, Corvallis, OR, 1977). American Mathematical Society, Providence, RI.
Springer, T.A. 1994. Linear algebraic groups, pp. 1–121. In Algebraic geometry. IV, Encyclopaedia of Mathematical Sciences, Vol. 55. Springer-Verlag, Berlin. (Translation of Algebraicheskaya geometriya 4, VNINITI, Moscow, 1989).
Springer, T.A. 1998. Linear algebraic groups. Progress in Mathematics, Vol. 9. Birkhäuser Boston, Boston, MA.
Springer, T.A. and Veldkamp, F.D. 2000. Octonions, Jordan algebras and exceptional groups. Springer Monographs in Mathematics. Springer-Verlag, Berlin.
Steinberg, R. 1965. Regular elements of semisimple algebraic groups. Inst. Hautes Etudes Sci. Publ. Math. pp. 49–80. Reprinted in Serre 1997.
Steinberg, R. 1967. Lectures on Chevalley groups. Department of Mathematics, Yale University. mimeographed notes (reprinted by the American Mathematical Society, 2016).
Steinberg, R. 1968. Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, No. 80. American Mathematical Society, Providence, RI.
Steinberg, R. 1999. The isomorphism and isogeny theorems for reductive algebraic groups. J. Algebra 216:366–383.
Suzuki, K. 1971. A note on a theorem of E. Cartan. Tôhoku Math. J. (2) 23:17–20.
Sweedler, M.E. 1967. Hopf algebras with one grouplike element. Trans. Amer. Math. Soc. 127:515–526.
Sweedler, M.E. 1969. Hopf algebras. Mathematics Lecture Note Series. W. A. Benjamin, Inc., New York and Amsterdam.
Takeuchi, M. 1972. A correspondence between Hopf ideals and sub-Hopf algebras. Manuscripta Math. 7:251–270.
Takeuchi, M. 1983. A hyperalgebraic proof of the isomorphism and isogeny theorems for reductive groups. J. Algebra 85:179–196.
Tate, J. 1997. Finite flat group schemes, pp. 121–154. In Modular forms and Fermat's last theorem (Boston, MA, 1995). Springer-Verlag, Berlin.
Tate, J. and Oort, F. 1970. Group schemes of prime order. Ann. Sci. École Norm. Sup. (4) 3:1–21.
Thăńg, N. 2008. On Galois cohomology of semisimple groups over local and global fields of positive characteristic. Math. Z. 259:457–467.
ThĂńg, N. 2012. On Galois cohomology of semisimple groups over local and global fields of positive characteristic, II. Math. Z. 270:1057–1065.
Tits, J. 1966. Classification of algebraic semisimple groups, pp. 33–62. In Algebraic Groups and Discontinuous Subgroups (Proceedings of Symposia in Pure Mathematics, Boulder, CO, 1965). American Mathematical Society, Providence, RI.
Tits, J. 1968. Lectures on Algebraic Groups, notes by P. André and D. Winter, fall term 1966–1967, Yale University.
Tits, J. 1971. Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque. J. Reine Angew. Math. 247:196–220.
Tits, J. 1992. Théorie des groupes, Annuaire du Collège de France 1991-92. Reprinted in Tits 2013.
Tits, J. 1993. Théorie des groupes, Annuaire du Collège de France 1992-93. Reprinted in Tits 2013.
Tits, J. 2013. Résumés des cours au Collège de France 1973–2000. Documents Mathématiques (Paris), Vol. 12. Société Mathématique de France, Paris.
Totaro, B. 2008. Hilbert's 14th problem over finite fields and a conjecture on the cone of curves. Compos. Math. 144:1176–1198.
Totaro, B. 2013. Pseudo-abelian varieties. Ann. Sci. École Norm. Sup. (4) 46:693–721.
VoskresenskiĬ, V.E. 1998. Algebraic groups and their birational invariants. Translations of Mathematical Monographs, Vol. 179. American Mathematical Society, Providence, RI.
Waterhouse, W.C. 1979. Introduction to affine group schemes. Graduate Texts in Mathematics, Vol. 66. Springer-Verlag, Berlin.
Weil, A. 1946. Foundations of Algebraic Geometry. American Mathematical Society Colloquium Publications, Vol. 29. American Mathematical Society, New York.
Weil, A. 1957. On the projective embedding of Abelian varieties, pp. 177–181. In Algebraic geometry and topology. A symposium in honor of S., Lefschetz. Princeton University Press, Princeton, NJ.
Weil, A. 1982. Adeles and algebraic groups. Progress in Mathematics, Vol. 23. Birkhäuser Boston. Based on lectures at IAS, 1959–1960.
Wu, X.L. 1986. On the extensions of abelian varieties by affine group schemes, pp. 361–387. In Group theory, Beijing 1984, Lecture Notes in Mathematics, Vol. 1185. Springer-Verlag, Berlin.
Zibrowius, M. 2015. Symmetric representation rings are rings. New York J. Math. 21:1055–1092.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.