Summary
WHAT parts of mathematics are useful?
First, the bulk of school mathematics, arithmetic, elementary algebra, elementary Euclidean geometry, elementary differential and integral calculus. We must except a certain amount of what is taught to ‘specialists’, such as projective geometry. In applied mathematics, the elements of mechanics (electricity, as taught in schools, must be classified as physics).
Next, a fair proportion of university mathematics is also useful, that part of it which is really a development of school mathematics with a more finished technique, and a certain amount of the more physical subjects such as electricity and hydromechanics. We must also remember that a reserve of knowledge is always an advantage, and that the most practical of mathematicians may be seriously handicapped if his knowledge is the bare minimum which is essential to him; and for this reason we must add a little under every heading. But our general conclusion must be that such mathematics is useful as is wanted by a superior engineer or a moderate physicist; and that is roughly the same thing as to say, such mathematics as has no particular aesthetic merit. Euclidean geometry, for example, is useful in so far as it is dull—we do not want the axiomatics of parallels, or the theory of proportion, or the construction of the regular pentagon.
One rather curious conclusion emerges, that pure mathematics is on the whole distinctly more useful than applied. A pure mathematician seems to have the advantage on the practical as well as on the aesthetic side. For what is useful above all is technique, and mathematical technique is taught mainly through pure mathematics.
- Type
- Chapter
- Information
- A Mathematician's Apology , pp. 133 - 136Publisher: Cambridge University PressPrint publication year: 1992