Measurements made at a Mach number of 0.18 and a chord-based Reynolds number of 4·2 x 106 on a constant-chord model having a NACA 4412 aerofoil section are described and compared with the results of flow field calculations.
Both the experimental arrangement and the difficulties initially experienced in achieving an adequate approximation to two-dimensional flow above the wing are briefly outlined.
The measurements include static pressure distributions on the wing surface and on the wind-tunnel walls above and below the mid-span section of the wing. The main emphasis in the experiment was, however, on defining the development of the upper surface boundary layer through separation (at about 20% chord ahead of the trailing-edge) and on into the wake, making extensive use of laser anemometry to measure mean velocities. In addition, Reynolds stresses were measured in certain parts of the flow field by hot-wire anemometry.
The flow field calculations are of the semi-inverse kind in which an inverse momentum-integral treatment of the shear flow, used to avoid difficulties at separation, is coupled to a direct solution of the inviscid flow problem. The main features of the method are outlined.