A numerical method which solves the time-dependent Navier-Stokes equations for plane, two-dimensional, compressible flow problems is presented. The method was applied to obtain the steady-state flow field about a flat-based 20° wedge at a free-stream Mach number of 6.05, a free-stream Reynolds number (based on the base height of the wedge) of 1.41 × 104, and a Prandtl number of 0.75. Two wedge surface temperature boundary conditions were investigated: adiabatic and isothermal walls. Convergence of the numerical solutions was demonstrated using two different finite-difference meshes. Numerical errors in the static pressure, velocity, and static temperature were generally less than 8 per cent in the wake of the body. Comparisons with experimental results and other independent theories were also made. For the isothermal wedge, calculated pressures on the surface of the body (including its base), static pressure profiles, pitot pressures profiles, and velocity profiles in the near wake were in agreement with corresponding experimental data. A comparison of static temperature profiles in the near wake of the isothermal wedge produced significant differences between numerical and experimental results near the wake shock. It was found that these differences could be explained in terms of uncertainties in the accuracy of the experimental measurements and thermal boundary conditions on the wedge surface. For the adiabatic wedge, the ramp boundary layer profiles and pressure distribution were in agreement with theoretical predictions coming from hypersonic interaction theory.