Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T23:06:00.062Z Has data issue: false hasContentIssue false

Cognitive gadgets and cognitive priors

Published online by Cambridge University Press:  12 September 2019

Gian Domenico Iannetti
Affiliation:
Department of Neuros cience, Physiology and Pharmacology, University College London, WC1E 6BT London, United Kingdom. g.iannetti@ucl.ac.ukhttps://www.iannettilab.net Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Roma, Italy
Giorgio Vallortigara
Affiliation:
Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto (TN), Italy. giorgio.vallortigara@unitn.ithttps://r.unitn.it/en/cimec/abc

Abstract

Some of the foundations of Heyes’ radical reasoning seem to be based on a fractional selection of available evidence. Using an ethological perspective, we argue against Heyes’ rapid dismissal of innate cognitive instincts. Heyes’ use of fMRI studies of literacy to claim that culture assembles pieces of mental technology seems an example of incorrect reverse inferences and overlap theories pervasive in cognitive neuroscience.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braitenberg, V. (1984) Vehicles: Experiments in synthetic psychology. Bradford Books.Google Scholar
Buchel, C., Morris, J., Dolan, R. J. & Friston, K. J. (1998) Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron 20(5):947–57.Google Scholar
Buiatti, M., Di Giorgio, E., Piazza, M., Polloni, C., Menna, G., Taddei, F., Baldo, E., and Vallortigara, G. (2019). Cortical route for facelike pattern processing in human newborns. Proceedings of the National Academy of Sciences USA 116(10):4625–30. Available at: https://www.ncbi.nlm.nih.gov/pubmed/?term=buiatti+vallortigara.Google Scholar
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., Dehaene-Lambertz, G., Kolinsky, R., Morais, J. & Cohen, L. (2010) How learning to read changes the cortical networks for vision and language. Science 330(6009):1359–64. doi: 10.1126/science.1194140.Google Scholar
Heyes, C. (2018) Cognitive gadgets: The cultural evolution of thinking. Harvard University Press.Google Scholar
Iannetti, G. D., Salomons, T. V., Moayedi, M., Mouraux, A. & Davis, K. D. (2013) Beyond metaphor: Contrasting mechanisms of social and physical pain. Trends in Cognitive Sciences 17(8):371378. doi: 10.1016/j.tics.2013.06.002.Google Scholar
Jelbert, S. A., Miller, R., Schiestl, M., Boeckle, M., Cheke, L. G., Gray, R. D., Taylor, A. H. & Clayton, N. S. (2019) New Caledonian crows infer the weight of objects from observing their movements in a breeze. Proceedings of the Royal Society B: Biological Sciences 286(1894):20182332. doi: http://dx.doi.org/10.1098/rspb.2018.2332.Google Scholar
Lorenzi, E., Mayer, U., Rosa-Salva, O. & Vallortigara, G. (2017) Dynamic features of animate motion activate septal and preoptic areas in visually naive chicks (Gallus gallus). Neuroscience 354:5468. doi: 10.1016/j.neuroscience.2017.04.022.Google Scholar
Lurz, R. W. (2011) Mindreading animals. MIT Press.Google Scholar
Mayer, U., Rosa-Salva, O., Morbioli, F. & Vallortigara, G. (2017) The motion of a living conspecific activates septal and preoptic areas in naive domestic chicks (Gallus gallus). European Journal of Neuroscience 45(3):423–32. doi: 10.1111/ejn.13484.Google Scholar
Meehl, P. E. (1978) Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. Journal of Consulting and Clinical Psychology 46(4):806–34. doi: 10.1037/0022–006X.46.4.806.Google Scholar
Meltzoff, A. N., Murray, L., Simpson, E., Heimann, M., Nagy, E., Nadel, J., Pedersen, E. J., Brooks, R., Messinger, D. S., De Pascalis, L., Subiaul, F., Paukner, A. & Ferrari, P. F. (2018) Re-examination of Oostenbroek et al. (2016): Evidence for neonatal imitation of tongue protrusion. Developmental Science 21(4):e12609. doi: 10.1111/desc.12609.Google Scholar
Poldrack, R. A. (2006) Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Science 10(2):5963. doi: 10.1016/j.tics.2005.12.004.Google Scholar
Price, C. J. & Devlin, J. T. (2003) The myth of the visual word form area. NeuroImage 19(3):473–81.Google Scholar
Rossion, B. & Jacques, C. (2011) The N170: Understanding the time course of face perception in the human brain. In: The Oxford handbook of event-related potential components, ed. Kappenman, E. S. & Luck, S. J., pp. 115142. Oxford University Press.Google Scholar
Shweder, R. A. & Sullivan, M. A. (1993) Cultural psychology: Who needs it? Annual Review of Psychology 44(1):497523. doi: 10.1146/annurev.ps.44.020193.002433.Google Scholar
van Turennout, M., Ellmore, T. & Martin, A. (2000) Long lasting cortical plasticity in the object naming system. Nature Neuroscience 3(12):1329–34.Google Scholar
Versace, E., Martinho-Truswell, A., Kacelnik, A. & Vallortigara, G. (2018) Priors in animal and artificial intelligence: Where does learning begin? Trends in Cognitive Sciences 22(11):963–65. doi: 10.1016/j.tics.2018.07.005.Google Scholar
Versace, E. & Vallortigara, G. (2015) Origins of knowledge: Insights from precocial species. Frontiers in Behavioral Neuroscience 9:338. doi: 10.3389/fnbeh.2015.00338.Google Scholar