Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T03:40:56.285Z Has data issue: false hasContentIssue false

Cognitive gadgets and genetic accommodation

Published online by Cambridge University Press:  12 September 2019

Eva Jablonka
Affiliation:
Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel. jablonka@tauex.tau.ac.ilhttps://en-humanities.tau.ac.il/profile/jablonka
Simona Ginsburg
Affiliation:
Department of Natural Science, Open University of Israel, Ra'anaa 43107, Israel. simona@opeu.ac.ilhttps://www.openu.ac.il/en/personalsites/SimonaGinsburg.aspx
Daniel Dor
Affiliation:
Department of Communication, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel. danield@tauex.tau.ac.ilhttps://en-social-sciences.tau.ac.il/profile/danield

Abstract

Heyes argues that human metacognitive strategies (cognitive gadgets) evolved through cultural rather than genetic evolution. Although we agree that increased plasticity is the hallmark of human metacognition, we suggest cognitive malleability required the genetic accommodation of gadget-specific processes that enhanced the overall cognitive flexibility of humans.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avital, E. and Jablonka, E. (2000) Animal traditions. Behavioural inheritance in evolution. Cambridge University Press.Google Scholar
Berto, S. and Nowick, K. (2018) Species-specific changes in a primate transcription factor network provide insights into the molecular evolution of the primate prefrontal cortex. Genome Biology and Evolution 10(8):2023–36.Google Scholar
Crozier, W. (2006) Blushing and the social emotions. The self unmasked. Palgrave Macmillan.Google Scholar
Darwin, C. (1872) The expression of the emotions in man and animals, 1st edition. John Murray.Google Scholar
Dor, D. (2015) The instruction of imagination: Language as a social communication technology. Oxford University Press.Google Scholar
Dor, D. and Jablonka, E. (2010) Canalization and plasticity in the evolution of linguistic communication. In: The evolution of human language, ed. Larson, R.K., Deprez, V. and Yamakido, H., pp. 135147. Cambridge University Press.Google Scholar
Florio, M., Albert, M., Tverna, E., Namba, T., Brand, H., Lewitus, E., Haffner, C., Sykes, A., Kuan Wong, F., Peters, J., Guhr, E., Klemroth, S., Prüfer, K., Kelso, J., Naumann, R., Nüsslein, I., Dahl, A., Lachmann, R., Pääbo, S., Wieland, B. and Huttner, W.B. (2015) Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347(6229):1465–70.Google Scholar
Gómez-Roblesa, A., Hopkins, W. D., Schapiro, S. J. & Sherwood, C. C. (2015) Relaxed genetic control of cortical organization in human brains compared with chimpanzees. Proceedings of the National Academy of Sciences USA, 112(48):14799–804.Google Scholar
Heyes, C. (2018) Cognitive gadgets: The cultural evolution of thinking. Harvard University Press.Google Scholar
Jablonka, E., Ginsburg, S. and Dor, D. (2012) The co-evolution of language and emotions. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1599):2152–59.Google Scholar
Jablonka, E. and Lamb, M. J. (2005) Evolution in four dimensions. MIT Press.Google Scholar
Jablonka, E. and Rechav, G. (1996) The evolution of language in the light of the evolution of literacy. In: The major origins of language, ed. Trabant, J., pp. 7088. Collegium Budapest.Google Scholar
Leroy, F., Cai, Q., Bogart, S. L., Dubois, J., Coulon, O., Monzalvo, K., Fischer, C., Glasel, H., Van der Haegen, L., Bénézit, A., Lin, C. P., Kennedy, D. N., Ihara, A. S., Hertz-Pannier, L., Moutard, M. L., Poupon, C., Brysbaert, M., Roberts, N., Hopkins, W. D., Mangin, J. F. and Dehaene-Lambertz, G. (2015) New human-specific brain landmark: The depth asymmetry of superior temporal sulcus. Proceedings of the National Academy of Sciences USA, 112(4):1208–13.Google Scholar
Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O. and Sestan, N. (2017) Evolution of the human nervous system function, structure, and development. Cell 170(2):226–47.Google Scholar
West-Eberhard, M. J. (2003) Developmental plasticity and evolution. Oxford University Press.Google Scholar