Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T18:39:10.413Z Has data issue: false hasContentIssue false

Is the MSB hypothesis (music as a coevolved system for social bonding) testable in the Popperian sense?

Published online by Cambridge University Press:  30 September 2021

Jonathan B. Fritz*
Affiliation:
Center for Neural Systems, New York University, New York, NY10003, USA Division of Behavioral and Cognitive Science, National Science Foundation, Alexandria, VA22314, USA. Jonathan.b.fritz@gmail.com

Abstract

“Music As a Coevolved System for Social Bonding” (MSB) is a brilliant synthesis and appealing hypothesis offering insights into the evolution and social bonding of musicality, but is so broad and sweeping it will be challenging to test, prove or falsify in the Popperian sense (Popper, 1959). After general comments, I focus my critique on underlying neurobiological mechanisms, and offer some suggestions for experimental tests of MSB.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albouy, P., Benjamin, L., Morillon, B., & Zatorre, R. J. (2020). Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science (New York, N.Y.), 367, 10431047.CrossRefGoogle ScholarPubMed
Baldassarre, D. T., Grieg, E. I., & Webster, M. S. (2016). The couple that sings together stays together: Duetting, aggression and extra-pair paternity in a promiscuous bird species. Biology Letters, 12(2), 20151025.CrossRefGoogle Scholar
Castro, M., L'heritier, F., Plailly, J., Saive, A. L., Corneyllie, A., Tillmann, B., & Perrin, F. (2020). Personal familiarity of music and its cerebral effect on subsequent speech processing. Science Reports, 10(1), 14854.CrossRefGoogle ScholarPubMed
Chang, A., Livingstone, S. R., Bosnyak, D. J., & Trainor, L. J. (2017). Body sway reflects leadership in joint music performance. Proceedings of the National Academy of Sciences USA, 114(21), E4134E4141.CrossRefGoogle ScholarPubMed
Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Development Science, 17(6), 10031011.CrossRefGoogle ScholarPubMed
Cooper, B. (Ed.) (2010). The Beethoven compendium. Thames and Hudson.Google Scholar
Ferreri, L., Mas-Herrerro, E., Zatorre, R. J., Ripolles, P., Gomez-Andres, A., Alicart, A., ... & Rodriguez-Fornelis, A. (2019). Dopamine modulates the reward experiences elicited by music. Proceedings of the National Academy of Sciences USA, 116(9), 37933798.CrossRefGoogle ScholarPubMed
Freiwald, W. A. (2020). Social interaction networks in the primate brain. Current Opinion in Neurobiology, 65, 4958.CrossRefGoogle ScholarPubMed
Geissmann, T. (2000). Gibbon songs and human music from an evolutionary perspective. In Wallin, N., Merker, B. & Brown, S. (Eds.), The origins of music (pp. 103123). MIT Press.Google Scholar
Goupil, L., & Aucouturier, J.-J. (2019). Musical pleasure and musical emotions. Proceedings of the National Academy of Sciences, 116(9), 33643366.CrossRefGoogle ScholarPubMed
Hackett, T. A. (2015). Anatomic organization of the auditory cortex. Handbook Clinical Neurology, 129, 2753.CrossRefGoogle ScholarPubMed
Hattori, Y., & Tomonaga, M. (2020). Rhythmic swaying induced by sound in chimpanzees. Proceedings of the National Academy of Sciences USA, 117(2), 936942.CrossRefGoogle ScholarPubMed
Hoffmann, S., Trost, L., Voigt, C., Leitner, S., Lemazina, A., Sagunsky, H., ... & Gahr, M. (2019). Duets recorded in the wild reveal that interindividually coordinated motor control enables cooperative behavior. Nature Communications, 10(1), 2577.CrossRefGoogle ScholarPubMed
Mas-Herrero, E., Dagher, A., & Zatorre, R. J. (2018). Modulating musical reward sensitivity up and down with transcranial magnetic stimulation. Nature Human Behavior, 2, 2732.CrossRefGoogle ScholarPubMed
Medalla, M., & Barbas, H. (2014). Specialized prefrontal “auditory fields”: Organization of primate prefrontal-temporal pathways. Frontiers in Neuroscience, 8, 77.CrossRefGoogle ScholarPubMed
Moerel, M., De Martino, F., & Formisano, E. (2014). An anatomical and functional topography of human auditory cortical areas. Frontiers in Neuroscience, 8, 225.CrossRefGoogle ScholarPubMed
Norman-Haignere, S. V., Kanwisher, N., McDermott, J. H., & Conway, B. R. (2019). Divergence in the functional organization of human and macaque auditory cortex revealed by fMRI responses to harmonic tones. Nature Neuroscience, 22(7), 10571060.CrossRefGoogle ScholarPubMed
Parkinson, C., Kleinbaum, A. M., & Wheatley, T. (2018). Similar neural responses predict friendship. Nature Communications, 9(1), 332.CrossRefGoogle ScholarPubMed
Pika, S., Wilkinson, R., Kendrick, K. H., & Vernes, S. C. (2018). Taking turns: Bridging the gap between human and animal communication. Proceedings of the Royal Society B, 285(1880), 20180598.CrossRefGoogle ScholarPubMed
Popper, K. (1959). The logic of scientific discovery. Basic Books.Google Scholar
Shepherd, S. V., & Freiwald, W. A. (2018). Functional networks for social communication in the macaque monkey. Neuron, 99(2), 413420.CrossRefGoogle ScholarPubMed
Sliwa, J., & Freiwald, W. A. (2017). A dedicated network for social interaction processing in the primate brain. Science (New York, N.Y.), 356, 745749.CrossRefGoogle ScholarPubMed
Swarbrick, D., Bosnyak, D., Livingstone, S. R., Bansal, J., Marsh-Rollo, S., Woolhouse, M. H., & Trainor, L. J. (2019). How live music moves us: Head movement differences in audiences to live vs recorded music. Frontiers in Psychology, 9, 2682.CrossRefGoogle Scholar
Teki, S., & Griffiths, T. D. (2016). Brain bases of working memory for time intervals in rhythmic sequences. Frontiers in Neuroscience, 10, 239.CrossRefGoogle ScholarPubMed
Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience, 31(10), 38053812.CrossRefGoogle ScholarPubMed
Wenhart, T., Bethlehem, R. A. I., Baron-Cohen, S., & Altenmuller, E. (2019). Autistic traits, resting-state connectivity, and absolute pitch in professional musicians: Shared and distinct neural features. Molecular Autism, 10, 20.CrossRefGoogle ScholarPubMed
Wright, A. A., Rivera, J. J., Hulse, S. H., Shyan, M., & Neiworth, J. J. (2000). Music perception and octave generalization in rhesus monkeys. Journal of Experimental Psychology General, 129(3), 291307.CrossRefGoogle ScholarPubMed
Zatorre, R. J. (2001). Neural specializations for tonal processing. Annals of the New York Academy of Sciences, 930, 193210.CrossRefGoogle ScholarPubMed