Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T04:58:34.309Z Has data issue: false hasContentIssue false

A neurodevelopmental disorders perspective into music, social attention, and social bonding

Published online by Cambridge University Press:  30 September 2021

Anna Kasdan
Affiliation:
Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37232, USA. anna.v.kasdan@vanderbilt.edu; reyna.gordon@vanderbilt.edu; miriam.lense@vanderbilt.eduannakasdan.com
Reyna L. Gordon
Affiliation:
Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37232, USA. anna.v.kasdan@vanderbilt.edu; reyna.gordon@vanderbilt.edu; miriam.lense@vanderbilt.eduannakasdan.com Department of Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN37232, USA. https://www.vumc.org/music-cognition-lab/person/faculty
Miriam D. Lense
Affiliation:
Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN37232, USA. anna.v.kasdan@vanderbilt.edu; reyna.gordon@vanderbilt.edu; miriam.lense@vanderbilt.eduannakasdan.com Department of Otolaryngology – Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN37232, USA. https://www.vumc.org/music-cognition-lab/person/faculty

Abstract

Our commentary addresses how two neurodevelopmental disorders, Williams syndrome and autism spectrum disorder, provide novel insights into the credible signaling and music and social bonding hypotheses presented in the two target articles. We suggest that these neurodevelopmental disorders, characterized by atypical social communication, allow us to test hypotheses about music, social bonding, and their underlying neurobiology.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barak, B., & Feng, G. (2016). Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nature Neuroscience, 19(6), 647655. https://doi.org/10.1038/nn.4276.Neurobiology.CrossRefGoogle ScholarPubMed
Boorom, O., Muñoz, V., Xin, R., Watson, M., & Lense, M. D. (2020). Parental responsiveness during musical and non-musical engagement in preschoolers with ASD. Research in Autism Spectrum Disorders, 78. https://doi.org/10.1016/j.rasd.2020.101641.CrossRefGoogle ScholarPubMed
Campbell, L. E., Daly, E., Toal, F., Stevens, A., Azuma, R., Karmiloff-Smith, A., … Murphy, K. C. (2009). Brain structural differences associated with the behavioural phenotype in children with Williams syndrome. Brain Research, 1258, 96107. https://doi.org/10.1016/j.brainres.2008.11.101.CrossRefGoogle ScholarPubMed
Caria, A., Venuti, P., & De Falco, S. (2011). Functional and dysfunctional brain circuits underlying emotional processing of music in autism spectrum disorders. Cerebral Cortex, 21(12), 28382849. https://doi.org/10.1093/cercor/bhr084.CrossRefGoogle ScholarPubMed
Cohen, D., Cassel, R. S., Saint-Georges, C., Mahdhaoui, A., Laznik, M. C., Apicella, F., … Chetouani, M. (2013). Do parentese prosody and fathers’ involvement in interacting facilitate social interaction in infants who later develop autism? PLoS ONE, 8(5), 110. https://doi.org/10.1371/journal.pone.0061402.CrossRefGoogle ScholarPubMed
Estes, A., Shaw, D. W. W., Sparks, B. F., Friedman, S., Giedd, J. N., Dawson, G., … Dager, S. R. (2011). Basal ganglia morphometry and repetitive behavior in young children with autism spectrum disorder. Autism Research, 4(3), 212220. https://doi.org/10.1002/aur.193.CrossRefGoogle ScholarPubMed
Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., & Keysers, C. (2012). Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 16(2), 114121. https://doi.org/10.1016/j.tics.2011.12.007.CrossRefGoogle ScholarPubMed
Heaton, P. (2005). Interval and contour processing in autism. Journal of Autism and Developmental Disorders, 35(6), 787793. https://doi.org/10.1007/s10803-005-0024-7.CrossRefGoogle ScholarPubMed
Hopyan, T., Dennis, M., Weksberg, R., & Cytrynbaum, C. (2001). Music skills and the expressive interpretation of music in children with Williams-Beuren syndrome: Pitch, rhythm, melodic imagery, phrasing, and musical affect. Child Neuropsychology, 7(1), 4253. https://doi.org/10.1076/chin.7.1.42.3147.CrossRefGoogle ScholarPubMed
Jamey, K., Foster, N. E. V., Sharda, M., Tuerk, C., Nadig, A., & Hyde, K. L. (2019). Evidence for intact melodic and rhythmic perception in children with autism spectrum disorder. Research in Autism Spectrum Disorders, 64, 112. https://doi.org/10.1016/j.rasd.2018.11.013.CrossRefGoogle Scholar
Kasdan, A., Gordon, R. L., & Lense, M. D. (2020). Neurophysiological correlates of dynamic beat tracking in individuals with Williams syndrome. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. https://doi.org/10.1016/j.bpsc.2020.10.003.Google ScholarPubMed
Lai, G., Pantazatos, S. P., Schneider, H., & Hirsch, J. (2012). Neural systems for speech and song in autism. Brain, 135(3), 961975. https://doi.org/10.1093/brain/awr335.CrossRefGoogle Scholar
Lense, M. D., & Camarata, S. (2020). PRESS-play: Musical engagement as a motivating platform for social interaction and social play in young children with ASD. Music & Science, 3, 205920432093308. https://doi.org/10.1177/2059204320933080.CrossRefGoogle ScholarPubMed
Lense, M. D., & Dykens, E. M. (2016). Beat perception and sociability: Evidence from Williams syndrome. Frontiers in Psychology, 7, 113. https://doi.org/10.3389/fpsyg.2016.00886.CrossRefGoogle ScholarPubMed
Lense, M. D., Gordon, R. L., Key, A. P. F., & Dykens, E. M. (2014). Neural correlates of cross-modal affective priming by music in Williams syndrome. Social Cognitive and Affective Neuroscience, 9(4), 529537. https://doi.org/10.1093/scan/nst017.CrossRefGoogle Scholar
Leong, V., Byrne, E., Clackson, K., Georgieva, S., Lam, S., & Wass, S. (2017). Speaker gaze increases information coupling between infant and adult brains. Proceedings of the National Academy of Sciences of the United States of America, 114(50), 1329013295. https://doi.org/10.1073/pnas.1702493114.CrossRefGoogle ScholarPubMed
Martens, M. A., Reutens, D. C., & Wilson, S. J. (2010). Auditory cortical volumes and musical ability in Williams syndrome. Neuropsychologia, 48(9), 26022609. https://doi.org/10.1016/j.neuropsychologia.2010.05.007.CrossRefGoogle ScholarPubMed
Matthews, T. E., Witek, M. A. G., Lund, T., Vuust, P., & Penhune, V. B. (2020). The sensation of groove engages motor and reward networks. NeuroImage, 214, 116768. https://doi.org/10.1016/j.neuroimage.2020.116768.CrossRefGoogle ScholarPubMed
Mervis, C. B., & Velleman, S. L. (2011). Children with Williams syndrome: Language, cognitive, and behavioral characteristics and their implications for intervention. Perspectives on Language Learning and Education, 18(3), 98107. https://doi.org/10.1044/lle18.3.98.CrossRefGoogle ScholarPubMed
Molnar-Szakacs, I., & Heaton, P. (2012). Music: A unique window into the world of autism. Annals of the New York Academy of Sciences, 1252(1), 318324. https://doi.org/10.1111/j.1749-6632.2012.06465.x.CrossRefGoogle ScholarPubMed
Nguyen, T., Schleihauf, H., Kayhan, E., Matthes, D., Vrtička, P., & Hoehl, S. (2020). Neural synchrony in mother–child conversation: Exploring the role of conversation patterns. Social Cognitive and Affective Neuroscience, 16(1–2), 93102. https://doi.org/10.1093/scan/nsaa079.CrossRefGoogle Scholar
Quigley, J., McNally, S., & Lawson, S. (2016). Prosodic patterns in interaction of low-risk and at-risk-of-autism spectrum disorders infants and their mothers at 12 and 18 months. Language Learning and Development, 12(3), 295310.CrossRefGoogle Scholar
Sharda, M., Midha, R., Malik, S., Mukerji, S., & Singh, N. C. (2015). Fronto-temporal connectivity is preserved during sung but not spoken word listening, across the autism spectrum. Autism Research, 8(2), 174186. https://doi.org/10.1002/aur.1437.CrossRefGoogle Scholar
Sharda, M., Tuerk, C., Chowdhury, R., Jamey, K., Foster, N., Custo-Blanch, M., … Hyde, K. (2018). Music improves social communication and auditory-motor connectivity in children with autism. Translational Psychiatry, 8(1), 231. https://doi.org/10.1038/s41398-018-0287-3.CrossRefGoogle ScholarPubMed
Steinberg, S., Shivers, C. M., Liu, T., Cirelli, L. K., & Lense, M. D. (2020). Musical Engagement and Parent-Child Attachment in Children with and without Developmental Disabilities. PsyArXiv, 135. https://doi.org/10.31234/osf.io/xveqy.Google Scholar
Tager-Flusberg, H. (2000). Understanding the language and communicative impairments in autism. International Review of Research in Mental Retardation, 23, 185205. https://doi.org/10.1016/s0074-7750(00)80011-7.CrossRefGoogle Scholar
Thompson, G. A., Shanahan, E. C., & Gordon, I. (2019). The role of music-based parent-child play activities in supporting social engagement with children on the autism spectrum: A content analysis of parent interviews. Nordic Journal of Music Therapy, 28(2), 108130. https://doi.org/10.1080/08098131.2018.1509107.CrossRefGoogle Scholar
Tryfon, A., Foster, N. E., Ouimet, T., Doyle-Thomas, K., Anagnostou, E., Sharda, M., & Hyde, K. L. (2017). Auditory-motor rhythm synchronization in children with autism spectrum disorder. Research in Autism Spectrum Disorders, 35, 5161. https://doi.org/10.1016/j.rasd.2016.12.004.CrossRefGoogle Scholar
Vega, J. N., Hohman, T. J., Pryweller, J. R., Dykens, E. M., & Thornton-Wells, T. A. (2015). Resting-state functional connectivity in individuals with Down syndrome and Williams syndrome compared with typically developing controls. Brain Connectivity, 5(8), 461475. https://doi.org/10.1089/brain.2014.0266.CrossRefGoogle ScholarPubMed
Williams, K. E., Berthelsen, D., Nicholson, J. M., Walker, S., & Abad, V. (2012). The effectiveness of a short-term group music therapy intervention for parents who have a child with a disability. Journal of Music Therapy, 49(1), 2344. https://doi.org/10.1093/jmt/49.1.23.CrossRefGoogle ScholarPubMed