Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T05:04:00.909Z Has data issue: false hasContentIssue false

Is neural entrainment to rhythms the basis of social bonding through music?

Published online by Cambridge University Press:  30 September 2021

Jessica A. Grahn
Affiliation:
Department of Psychology, Brain and Mind Institute, Western University, London, ONN6A 3K7, Canada. jgrahn@uwo.ca; www.jessicagrahn.com
Anna-Katharina R. Bauer
Affiliation:
Department of Experimental Psychology, University of Oxford, OxfordOX2 6GG, UK. anna-katharina.matke-bauer@psy.ox.ac.uk; http://www.annakatharinabauer.com/ Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, OxfordOX3 7JX, UK
Anna Zamm
Affiliation:
Department of Cognitive Science, Central European University, Quellenstrasse 51, Vienna1100, Austria. zamma@ceu.edu; https://annapzamm.github.io/

Abstract

Music uses the evolutionarily unique temporal sensitivity of the auditory system and its tight coupling to the motor system to create a common neurophysiological clock between individuals that facilitates action coordination. We propose that this shared common clock arises from entrainment to musical rhythms, the process by which partners' brains and bodies become temporally aligned to the same rhythmic pulse.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, A.-K. R., Bleichner, M. G., Jaeger, M., Thorne, J. D., & Debener, S. (2018). Dynamic phase alignment of ongoing auditory cortex oscillations. NeuroImage, 167, 396407.CrossRefGoogle ScholarPubMed
Chauvigné, L. A., Walton, A., Richardson, M. J., & Brown, S. (2019). Multi-person and multisensory synchronization during group dancing. Human Movement Science, 63, 199208.CrossRefGoogle ScholarPubMed
Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17(6), 10031011.CrossRefGoogle ScholarPubMed
Cohen, E. E. A., Ejsmond-Frey, R., Knight, N., & Dunbar, R. I. M. (2010). Rowers’ high: Behavioural synchrony is correlated with elevated pain thresholds. Biological Letters, 6, 106108.CrossRefGoogle ScholarPubMed
Cook, P., Rouse, A., Wilson, M., & Reichmuth, C. (2013). A California sea lion (Zalophus californianus) can keep the beat: Motor entrainment to rhythmic auditory stimuli in a non-vocal mimic. Journal of Comparative Psychology, 127(4), 412.CrossRefGoogle Scholar
Demos, A. P., Layeghi, H., Wanderley, M. M., & Palmer, C. (2019). Staying together: A bidirectional delay–coupled approach to joint action. Cognitive Science, 43(8), e12766.CrossRefGoogle ScholarPubMed
Fujioka, T., Ross, B., & Trainor, L. J. (2015). Beta-band oscillations represent auditory beat and its metrical hierarchy in perception and imagery. Journal of Neuroscience, 35(45), 1518715198.CrossRefGoogle ScholarPubMed
Fujioka, T., Trainor, L. J., Large, E. W., & Ross, B. (2009). Beta and gamma rhythms in human auditory cortex during musical beat processing. Annals of the New York Academy of Sciences, 1169, 8992.CrossRefGoogle ScholarPubMed
Gordon, I., Gilboa, A., Cohen, S., Milstein, N., Haimovich, N., Pinhasi, S., & Siegman, S. (2020). Physiological and behavioral synchrony predict group cohesion and performance. Scientific Reports, 10(1), 112.CrossRefGoogle ScholarPubMed
Grahn, J. A., & Rowe, J. B. (2009). Feeling the beat: Premotor and striatal interactions in musicians and nonmusicians during beat perception. Journal of Neuroscience, 29(23), 75407548.CrossRefGoogle ScholarPubMed
Grahn, J. A., & Rowe, J. B. (2013). Finding and feeling the musical beat: Striatal dissociations between detection and prediction of regularity. Cerebral Cortex, 23(4), 913921.CrossRefGoogle ScholarPubMed
Grahn, J. A., & Schuit, D. (2012). Individual differences in rhythmic ability: Behavioral and neuroimaging investigations. Psychomusicology: Music, Mind, and Brain, 22(2), 105.CrossRefGoogle Scholar
Grahn, J., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893906.CrossRefGoogle ScholarPubMed
Helfrich, R. F., Breska, A., & Knight, R. T. (2019). Neural entrainment and network resonance in support of top-down guided attention. Current Opinion in Psychology, 29, 8289.CrossRefGoogle ScholarPubMed
Henry, M. J., & Herrmann, B. (2014). Low-frequency neural oscillations support dynamic attending in temporal context. Timing & Time Perception, 2, 6286.CrossRefGoogle Scholar
Henry, M. J., & Obleser, J. (2012). Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proceedings of the National Academy of Sciences of the United States of America, 109(49), 2009520100.CrossRefGoogle ScholarPubMed
Hove, M. J., & Risen, J. L. (2009). It's all in the timing: Interpersonal synchrony increases affiliation. Social cognition, 27(6), 949960.CrossRefGoogle Scholar
Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13(4), 313319.CrossRefGoogle ScholarPubMed
Lakatos, P., Gross, J., & Thut, G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology, 29(18), R890R905.CrossRefGoogle ScholarPubMed
Lameira, A. R., Eerola, T., & Ravignani, A. (2019). Coupled whole-body rhythmic entrainment between two chimpanzees. Scientific Reports, 9(1), 18.CrossRefGoogle ScholarPubMed
Launay, J., Dean, R. T., & Bailes, F. (2013). Synchronization can influence trust following virtual interaction. Experimental Psychology, 60, 5363.CrossRefGoogle ScholarPubMed
Launay, J., Tarr, B., & Dunbar, R. I. (2016). Synchrony as an adaptive mechanism for large-scale human social bonding. Ethology, 122(10), 779789.CrossRefGoogle Scholar
Leow, L. A., Waclawik, K., & Grahn, J. A. (2018). The role of attention and intention in synchronization to music: Effects on gait. Experimental Brain Research, 236(1), 99115.CrossRefGoogle ScholarPubMed
Mathias, B., Zamm, A., Gianferrara, P. G., Ross, B., & Palmer, C. (2020). Rhythm complexity modulates behavioral and neural dynamics during auditory–motor synchronization. Journal of Cognitive Neuroscience, 32(10), 18641880.CrossRefGoogle ScholarPubMed
Morillon, B., & Baillet, S. (2017). Motor origin of temporal predictions in auditory attention. Proceedings of the National Academy of Sciences, 114(42), E8913E8921.CrossRefGoogle ScholarPubMed
Müller, V., & Lindenberger, U. (2011). Cardiac and respiratory patterns synchronize between persons during choir singing. PLoS ONE, 6(9), e24893. doi: 10.1371/journal.pone.0024893CrossRefGoogle ScholarPubMed
Müller, V., Sänger, J., & Lindenberger, U. (2013). Intra- and inter-brain synchronization during musical improvisation on the guitar. PLoS ONE, 8(9), e73852.CrossRefGoogle ScholarPubMed
Nessler, J. A., & Gilliland, S. J. (2010). Kinematic analysis of side-by-side stepping with intentional and unintentional synchronization. Gait & Posture, 31(4), 527529.CrossRefGoogle ScholarPubMed
Novembre, G., Knoblich, G., Dunne, L., & Keller, P. E. (2017). Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation. Social Cognitive and Affective Neuroscience, 12(4), 662670.CrossRefGoogle Scholar
Nozaradan, S., Zerouali, Y., Peretz, I., & Mouraux, A. (2015). Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat. Cerebral Cortex, 25(3), 736747.CrossRefGoogle Scholar
Pan, Y., Novembre, G., Song, B., Zhu, Y., & Hu, Y. (2021). Dual brain stimulation enhances interpersonal learning through spontaneous movement synchrony. Social Cognitive and Affective Neuroscience, 16(1–2), 210221.CrossRefGoogle ScholarPubMed
Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology, 19(10), 827830.CrossRefGoogle Scholar
Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: A universal concept in nonlinear sciences (Vol. 12). Cambridge University Press.CrossRefGoogle Scholar
Sänger, J., Müller, V., & Lindenberger, U. (2012). Intra- and interbrain synchronization and network properties when playing guitar in duets. Frontiers in Human Neuroscience, 6, 312.CrossRefGoogle ScholarPubMed
Sänger, J., Müller, V., & Lindenberger, U. (2013). Directionality in hyperbrain networks discriminates between leaders and followers in guitar duets. Frontiers in Human Neuroscience, 7, 234.CrossRefGoogle ScholarPubMed
Wass, S. V., Whitehorn, M., Haresign, I. M., Phillips, E., & Leong, V. (2020). Interpersonal neural entrainment during early social interaction. Trends in Cognitive Sciences, 24(4), 329342.CrossRefGoogle ScholarPubMed
Zamm, A., Debener, S., Bauer, A-K.R., Bleichner, M.G., Demos, A.P., & Palmer, C. (2018). Amplitude envelope correlations measure synchronous cortical oscillations in performing musicians. Annals of the New York Academy of Sciences, 1423(1), 251263.CrossRefGoogle Scholar
Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews. Neuroscience, 8(7), 547558.CrossRefGoogle ScholarPubMed